Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{\frac{2}{3}\left(\frac{30+1}{6}-\frac{4\times 8+3}{8}\right)}{\frac{1\times 18+1}{18}}
Multiply 5 and 6 to get 30.
\frac{\frac{2}{3}\left(\frac{31}{6}-\frac{4\times 8+3}{8}\right)}{\frac{1\times 18+1}{18}}
Add 30 and 1 to get 31.
\frac{\frac{2}{3}\left(\frac{31}{6}-\frac{32+3}{8}\right)}{\frac{1\times 18+1}{18}}
Multiply 4 and 8 to get 32.
\frac{\frac{2}{3}\left(\frac{31}{6}-\frac{35}{8}\right)}{\frac{1\times 18+1}{18}}
Add 32 and 3 to get 35.
\frac{\frac{2}{3}\left(\frac{124}{24}-\frac{105}{24}\right)}{\frac{1\times 18+1}{18}}
Least common multiple of 6 and 8 is 24. Convert \frac{31}{6} and \frac{35}{8} to fractions with denominator 24.
\frac{\frac{2}{3}\times \frac{124-105}{24}}{\frac{1\times 18+1}{18}}
Since \frac{124}{24} and \frac{105}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2}{3}\times \frac{19}{24}}{\frac{1\times 18+1}{18}}
Subtract 105 from 124 to get 19.
\frac{\frac{2\times 19}{3\times 24}}{\frac{1\times 18+1}{18}}
Multiply \frac{2}{3} times \frac{19}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{38}{72}}{\frac{1\times 18+1}{18}}
Do the multiplications in the fraction \frac{2\times 19}{3\times 24}.
\frac{\frac{19}{36}}{\frac{1\times 18+1}{18}}
Reduce the fraction \frac{38}{72} to lowest terms by extracting and canceling out 2.
\frac{\frac{19}{36}}{\frac{18+1}{18}}
Multiply 1 and 18 to get 18.
\frac{\frac{19}{36}}{\frac{19}{18}}
Add 18 and 1 to get 19.
\frac{19}{36}\times \frac{18}{19}
Divide \frac{19}{36} by \frac{19}{18} by multiplying \frac{19}{36} by the reciprocal of \frac{19}{18}.
\frac{19\times 18}{36\times 19}
Multiply \frac{19}{36} times \frac{18}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{18}{36}
Cancel out 19 in both numerator and denominator.
\frac{1}{2}
Reduce the fraction \frac{18}{36} to lowest terms by extracting and canceling out 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}