Evaluate
\frac{4\sqrt{5}}{25}-\frac{22}{15}\approx -1.10889579
Factor
\frac{2 {(6 \sqrt{5} - 55)}}{75} = -1.1088957902667003
Share
Copied to clipboard
\frac{2}{3}\times \frac{4}{5}+\frac{2}{5}\sqrt{\frac{4}{5}}-\frac{2}{7}\sqrt{\frac{49}{4}}-\frac{3}{5}\sqrt{\frac{25}{9}}
Rewrite the square root of the division \frac{16}{25} as the division of square roots \frac{\sqrt{16}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{2\times 4}{3\times 5}+\frac{2}{5}\sqrt{\frac{4}{5}}-\frac{2}{7}\sqrt{\frac{49}{4}}-\frac{3}{5}\sqrt{\frac{25}{9}}
Multiply \frac{2}{3} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{15}+\frac{2}{5}\sqrt{\frac{4}{5}}-\frac{2}{7}\sqrt{\frac{49}{4}}-\frac{3}{5}\sqrt{\frac{25}{9}}
Do the multiplications in the fraction \frac{2\times 4}{3\times 5}.
\frac{8}{15}+\frac{2}{5}\times \frac{\sqrt{4}}{\sqrt{5}}-\frac{2}{7}\sqrt{\frac{49}{4}}-\frac{3}{5}\sqrt{\frac{25}{9}}
Rewrite the square root of the division \sqrt{\frac{4}{5}} as the division of square roots \frac{\sqrt{4}}{\sqrt{5}}.
\frac{8}{15}+\frac{2}{5}\times \frac{2}{\sqrt{5}}-\frac{2}{7}\sqrt{\frac{49}{4}}-\frac{3}{5}\sqrt{\frac{25}{9}}
Calculate the square root of 4 and get 2.
\frac{8}{15}+\frac{2}{5}\times \frac{2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{2}{7}\sqrt{\frac{49}{4}}-\frac{3}{5}\sqrt{\frac{25}{9}}
Rationalize the denominator of \frac{2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{8}{15}+\frac{2}{5}\times \frac{2\sqrt{5}}{5}-\frac{2}{7}\sqrt{\frac{49}{4}}-\frac{3}{5}\sqrt{\frac{25}{9}}
The square of \sqrt{5} is 5.
\frac{8}{15}+\frac{2\times 2\sqrt{5}}{5\times 5}-\frac{2}{7}\sqrt{\frac{49}{4}}-\frac{3}{5}\sqrt{\frac{25}{9}}
Multiply \frac{2}{5} times \frac{2\sqrt{5}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{15}+\frac{2\times 2\sqrt{5}}{5\times 5}-\frac{2}{7}\times \frac{7}{2}-\frac{3}{5}\sqrt{\frac{25}{9}}
Rewrite the square root of the division \frac{49}{4} as the division of square roots \frac{\sqrt{49}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{8}{15}+\frac{2\times 2\sqrt{5}}{5\times 5}+\frac{-2\times 7}{7\times 2}-\frac{3}{5}\sqrt{\frac{25}{9}}
Multiply -\frac{2}{7} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{15}+\frac{2\times 2\sqrt{5}}{5\times 5}+\frac{-2}{2}-\frac{3}{5}\sqrt{\frac{25}{9}}
Cancel out 7 in both numerator and denominator.
\frac{8}{15}+\frac{2\times 2\sqrt{5}}{5\times 5}-1-\frac{3}{5}\sqrt{\frac{25}{9}}
Divide -2 by 2 to get -1.
\frac{8}{15}+\frac{2\times 2\sqrt{5}}{5\times 5}-\frac{15}{15}-\frac{3}{5}\sqrt{\frac{25}{9}}
Convert 1 to fraction \frac{15}{15}.
\frac{8-15}{15}+\frac{2\times 2\sqrt{5}}{5\times 5}-\frac{3}{5}\sqrt{\frac{25}{9}}
Since \frac{8}{15} and \frac{15}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{15}+\frac{2\times 2\sqrt{5}}{5\times 5}-\frac{3}{5}\sqrt{\frac{25}{9}}
Subtract 15 from 8 to get -7.
-\frac{7}{15}+\frac{4\sqrt{5}}{5\times 5}-\frac{3}{5}\sqrt{\frac{25}{9}}
Multiply 2 and 2 to get 4.
-\frac{7}{15}+\frac{4\sqrt{5}}{25}-\frac{3}{5}\sqrt{\frac{25}{9}}
Multiply 5 and 5 to get 25.
-\frac{7}{15}+\frac{4\sqrt{5}}{25}-\frac{3}{5}\times \frac{5}{3}
Rewrite the square root of the division \frac{25}{9} as the division of square roots \frac{\sqrt{25}}{\sqrt{9}}. Take the square root of both numerator and denominator.
-\frac{7}{15}+\frac{4\sqrt{5}}{25}+\frac{-3\times 5}{5\times 3}
Multiply -\frac{3}{5} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
-\frac{7}{15}+\frac{4\sqrt{5}}{25}+\frac{-3}{3}
Cancel out 5 in both numerator and denominator.
-\frac{7}{15}+\frac{4\sqrt{5}}{25}-1
Divide -3 by 3 to get -1.
-\frac{7}{15}+\frac{4\sqrt{5}}{25}-\frac{15}{15}
Convert 1 to fraction \frac{15}{15}.
\frac{-7-15}{15}+\frac{4\sqrt{5}}{25}
Since -\frac{7}{15} and \frac{15}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{22}{15}+\frac{4\sqrt{5}}{25}
Subtract 15 from -7 to get -22.
-\frac{22\times 5}{75}+\frac{3\times 4\sqrt{5}}{75}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15 and 25 is 75. Multiply -\frac{22}{15} times \frac{5}{5}. Multiply \frac{4\sqrt{5}}{25} times \frac{3}{3}.
\frac{-22\times 5+3\times 4\sqrt{5}}{75}
Since -\frac{22\times 5}{75} and \frac{3\times 4\sqrt{5}}{75} have the same denominator, add them by adding their numerators.
\frac{-110+12\sqrt{5}}{75}
Do the multiplications in -22\times 5+3\times 4\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}