Solve for c
c=\frac{6m}{7}
m\neq 0
Solve for m
m=\frac{7c}{6}
c\neq 0
Share
Copied to clipboard
\frac{2}{3}\times 2\times 6c+6c\left(-\frac{1}{6}\right)=1\times 6m
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6c, the least common multiple of 3,6,c.
\frac{4}{3}\times 6c+6c\left(-\frac{1}{6}\right)=1\times 6m
Multiply \frac{2}{3} and 2 to get \frac{4}{3}.
8c+6c\left(-\frac{1}{6}\right)=1\times 6m
Multiply \frac{4}{3} and 6 to get 8.
8c-c=1\times 6m
Multiply 6 and -\frac{1}{6} to get -1.
7c=1\times 6m
Combine 8c and -c to get 7c.
7c=6m
Multiply 1 and 6 to get 6.
\frac{7c}{7}=\frac{6m}{7}
Divide both sides by 7.
c=\frac{6m}{7}
Dividing by 7 undoes the multiplication by 7.
c=\frac{6m}{7}\text{, }c\neq 0
Variable c cannot be equal to 0.
\frac{2}{3}\times 2\times 6c+6c\left(-\frac{1}{6}\right)=1\times 6m
Multiply both sides of the equation by 6c, the least common multiple of 3,6,c.
\frac{4}{3}\times 6c+6c\left(-\frac{1}{6}\right)=1\times 6m
Multiply \frac{2}{3} and 2 to get \frac{4}{3}.
8c+6c\left(-\frac{1}{6}\right)=1\times 6m
Multiply \frac{4}{3} and 6 to get 8.
8c-c=1\times 6m
Multiply 6 and -\frac{1}{6} to get -1.
7c=1\times 6m
Combine 8c and -c to get 7c.
7c=6m
Multiply 1 and 6 to get 6.
6m=7c
Swap sides so that all variable terms are on the left hand side.
\frac{6m}{6}=\frac{7c}{6}
Divide both sides by 6.
m=\frac{7c}{6}
Dividing by 6 undoes the multiplication by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}