Solve for x
x=-\frac{27}{40}=-0.675
Graph
Share
Copied to clipboard
-\frac{3}{4}+\frac{5}{6}x=-\frac{7}{8}\times \frac{3}{2}
Multiply both sides by \frac{3}{2}, the reciprocal of \frac{2}{3}.
-\frac{3}{4}+\frac{5}{6}x=\frac{-7\times 3}{8\times 2}
Multiply -\frac{7}{8} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{4}+\frac{5}{6}x=\frac{-21}{16}
Do the multiplications in the fraction \frac{-7\times 3}{8\times 2}.
-\frac{3}{4}+\frac{5}{6}x=-\frac{21}{16}
Fraction \frac{-21}{16} can be rewritten as -\frac{21}{16} by extracting the negative sign.
\frac{5}{6}x=-\frac{21}{16}+\frac{3}{4}
Add \frac{3}{4} to both sides.
\frac{5}{6}x=-\frac{21}{16}+\frac{12}{16}
Least common multiple of 16 and 4 is 16. Convert -\frac{21}{16} and \frac{3}{4} to fractions with denominator 16.
\frac{5}{6}x=\frac{-21+12}{16}
Since -\frac{21}{16} and \frac{12}{16} have the same denominator, add them by adding their numerators.
\frac{5}{6}x=-\frac{9}{16}
Add -21 and 12 to get -9.
x=-\frac{9}{16}\times \frac{6}{5}
Multiply both sides by \frac{6}{5}, the reciprocal of \frac{5}{6}.
x=\frac{-9\times 6}{16\times 5}
Multiply -\frac{9}{16} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-54}{80}
Do the multiplications in the fraction \frac{-9\times 6}{16\times 5}.
x=-\frac{27}{40}
Reduce the fraction \frac{-54}{80} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}