Verify
false
Share
Copied to clipboard
\frac{2}{3}\times 9+1=\frac{1}{3}\times \frac{9}{4}+4
Anything divided by one gives itself.
\frac{2\times 9}{3}+1=\frac{1}{3}\times \frac{9}{4}+4
Express \frac{2}{3}\times 9 as a single fraction.
\frac{18}{3}+1=\frac{1}{3}\times \frac{9}{4}+4
Multiply 2 and 9 to get 18.
6+1=\frac{1}{3}\times \frac{9}{4}+4
Divide 18 by 3 to get 6.
7=\frac{1}{3}\times \frac{9}{4}+4
Add 6 and 1 to get 7.
7=\frac{1\times 9}{3\times 4}+4
Multiply \frac{1}{3} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
7=\frac{9}{12}+4
Do the multiplications in the fraction \frac{1\times 9}{3\times 4}.
7=\frac{3}{4}+4
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
7=\frac{3}{4}+\frac{16}{4}
Convert 4 to fraction \frac{16}{4}.
7=\frac{3+16}{4}
Since \frac{3}{4} and \frac{16}{4} have the same denominator, add them by adding their numerators.
7=\frac{19}{4}
Add 3 and 16 to get 19.
\frac{28}{4}=\frac{19}{4}
Convert 7 to fraction \frac{28}{4}.
\text{false}
Compare \frac{28}{4} and \frac{19}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}