Evaluate
\frac{1}{3}\approx 0.333333333
Factor
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
\frac{2}{3}\left(-\frac{3}{18}+\frac{10}{18}-\left(-\frac{2}{3}-\frac{1}{6}-\left(\frac{1}{3}-\frac{5}{6}\right)\right)-\frac{2}{9}\right)
Least common multiple of 6 and 9 is 18. Convert -\frac{1}{6} and \frac{5}{9} to fractions with denominator 18.
\frac{2}{3}\left(\frac{-3+10}{18}-\left(-\frac{2}{3}-\frac{1}{6}-\left(\frac{1}{3}-\frac{5}{6}\right)\right)-\frac{2}{9}\right)
Since -\frac{3}{18} and \frac{10}{18} have the same denominator, add them by adding their numerators.
\frac{2}{3}\left(\frac{7}{18}-\left(-\frac{2}{3}-\frac{1}{6}-\left(\frac{1}{3}-\frac{5}{6}\right)\right)-\frac{2}{9}\right)
Add -3 and 10 to get 7.
\frac{2}{3}\left(\frac{7}{18}-\left(-\frac{4}{6}-\frac{1}{6}-\left(\frac{1}{3}-\frac{5}{6}\right)\right)-\frac{2}{9}\right)
Least common multiple of 3 and 6 is 6. Convert -\frac{2}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{2}{3}\left(\frac{7}{18}-\left(\frac{-4-1}{6}-\left(\frac{1}{3}-\frac{5}{6}\right)\right)-\frac{2}{9}\right)
Since -\frac{4}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}\left(\frac{7}{18}-\left(-\frac{5}{6}-\left(\frac{1}{3}-\frac{5}{6}\right)\right)-\frac{2}{9}\right)
Subtract 1 from -4 to get -5.
\frac{2}{3}\left(\frac{7}{18}-\left(-\frac{5}{6}-\left(\frac{2}{6}-\frac{5}{6}\right)\right)-\frac{2}{9}\right)
Least common multiple of 3 and 6 is 6. Convert \frac{1}{3} and \frac{5}{6} to fractions with denominator 6.
\frac{2}{3}\left(\frac{7}{18}-\left(-\frac{5}{6}-\frac{2-5}{6}\right)-\frac{2}{9}\right)
Since \frac{2}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}\left(\frac{7}{18}-\left(-\frac{5}{6}-\frac{-3}{6}\right)-\frac{2}{9}\right)
Subtract 5 from 2 to get -3.
\frac{2}{3}\left(\frac{7}{18}-\left(-\frac{5}{6}-\left(-\frac{1}{2}\right)\right)-\frac{2}{9}\right)
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
\frac{2}{3}\left(\frac{7}{18}-\left(-\frac{5}{6}+\frac{1}{2}\right)-\frac{2}{9}\right)
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{2}{3}\left(\frac{7}{18}-\left(-\frac{5}{6}+\frac{3}{6}\right)-\frac{2}{9}\right)
Least common multiple of 6 and 2 is 6. Convert -\frac{5}{6} and \frac{1}{2} to fractions with denominator 6.
\frac{2}{3}\left(\frac{7}{18}-\frac{-5+3}{6}-\frac{2}{9}\right)
Since -\frac{5}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{2}{3}\left(\frac{7}{18}-\frac{-2}{6}-\frac{2}{9}\right)
Add -5 and 3 to get -2.
\frac{2}{3}\left(\frac{7}{18}-\left(-\frac{1}{3}\right)-\frac{2}{9}\right)
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}\left(\frac{7}{18}+\frac{1}{3}-\frac{2}{9}\right)
The opposite of -\frac{1}{3} is \frac{1}{3}.
\frac{2}{3}\left(\frac{7}{18}+\frac{6}{18}-\frac{2}{9}\right)
Least common multiple of 18 and 3 is 18. Convert \frac{7}{18} and \frac{1}{3} to fractions with denominator 18.
\frac{2}{3}\left(\frac{7+6}{18}-\frac{2}{9}\right)
Since \frac{7}{18} and \frac{6}{18} have the same denominator, add them by adding their numerators.
\frac{2}{3}\left(\frac{13}{18}-\frac{2}{9}\right)
Add 7 and 6 to get 13.
\frac{2}{3}\left(\frac{13}{18}-\frac{4}{18}\right)
Least common multiple of 18 and 9 is 18. Convert \frac{13}{18} and \frac{2}{9} to fractions with denominator 18.
\frac{2}{3}\times \frac{13-4}{18}
Since \frac{13}{18} and \frac{4}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}\times \frac{9}{18}
Subtract 4 from 13 to get 9.
\frac{2}{3}\times \frac{1}{2}
Reduce the fraction \frac{9}{18} to lowest terms by extracting and canceling out 9.
\frac{2\times 1}{3\times 2}
Multiply \frac{2}{3} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}
Cancel out 2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}