Evaluate
\frac{5}{2}=2.5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
\frac{\frac{2}{3}\times 18}{\frac{12}{20}\times 8}
Divide \frac{\frac{2}{3}}{\frac{12}{20}} by \frac{8}{18} by multiplying \frac{\frac{2}{3}}{\frac{12}{20}} by the reciprocal of \frac{8}{18}.
\frac{\frac{2\times 18}{3}}{\frac{12}{20}\times 8}
Express \frac{2}{3}\times 18 as a single fraction.
\frac{\frac{36}{3}}{\frac{12}{20}\times 8}
Multiply 2 and 18 to get 36.
\frac{12}{\frac{12}{20}\times 8}
Divide 36 by 3 to get 12.
\frac{12}{\frac{3}{5}\times 8}
Reduce the fraction \frac{12}{20} to lowest terms by extracting and canceling out 4.
\frac{12}{\frac{3\times 8}{5}}
Express \frac{3}{5}\times 8 as a single fraction.
\frac{12}{\frac{24}{5}}
Multiply 3 and 8 to get 24.
12\times \frac{5}{24}
Divide 12 by \frac{24}{5} by multiplying 12 by the reciprocal of \frac{24}{5}.
\frac{12\times 5}{24}
Express 12\times \frac{5}{24} as a single fraction.
\frac{60}{24}
Multiply 12 and 5 to get 60.
\frac{5}{2}
Reduce the fraction \frac{60}{24} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}