Evaluate
\frac{8}{31}\approx 0.258064516
Factor
\frac{2 ^ {3}}{31} = 0.25806451612903225
Share
Copied to clipboard
\frac{\frac{2}{3}}{\frac{5}{\frac{1}{2}+1}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{2}{3}}{\frac{5}{\frac{1}{2}+\frac{2}{2}}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{2}{3}}{\frac{5}{\frac{1+2}{2}}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Since \frac{1}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{2}{3}}{\frac{5}{\frac{3}{2}}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Add 1 and 2 to get 3.
\frac{\frac{2}{3}}{5\times \frac{2}{3}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Divide 5 by \frac{3}{2} by multiplying 5 by the reciprocal of \frac{3}{2}.
\frac{\frac{2}{3}}{\frac{5\times 2}{3}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Express 5\times \frac{2}{3} as a single fraction.
\frac{\frac{2}{3}}{\frac{10}{3}-3\left(\frac{1}{2}-\frac{1}{4}\right)}
Multiply 5 and 2 to get 10.
\frac{\frac{2}{3}}{\frac{10}{3}-3\left(\frac{2}{4}-\frac{1}{4}\right)}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{\frac{2}{3}}{\frac{10}{3}-3\times \frac{2-1}{4}}
Since \frac{2}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2}{3}}{\frac{10}{3}-3\times \frac{1}{4}}
Subtract 1 from 2 to get 1.
\frac{\frac{2}{3}}{\frac{10}{3}-\frac{3}{4}}
Multiply 3 and \frac{1}{4} to get \frac{3}{4}.
\frac{\frac{2}{3}}{\frac{40}{12}-\frac{9}{12}}
Least common multiple of 3 and 4 is 12. Convert \frac{10}{3} and \frac{3}{4} to fractions with denominator 12.
\frac{\frac{2}{3}}{\frac{40-9}{12}}
Since \frac{40}{12} and \frac{9}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2}{3}}{\frac{31}{12}}
Subtract 9 from 40 to get 31.
\frac{2}{3}\times \frac{12}{31}
Divide \frac{2}{3} by \frac{31}{12} by multiplying \frac{2}{3} by the reciprocal of \frac{31}{12}.
\frac{2\times 12}{3\times 31}
Multiply \frac{2}{3} times \frac{12}{31} by multiplying numerator times numerator and denominator times denominator.
\frac{24}{93}
Do the multiplications in the fraction \frac{2\times 12}{3\times 31}.
\frac{8}{31}
Reduce the fraction \frac{24}{93} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}