Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{3\left(2x-1\right)}\left(x-4\right)+3\left(x-\frac{1}{3}\right)\left(\frac{1}{3}+x\right)
Express \frac{\frac{2}{3}}{2x-1} as a single fraction.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+3\left(x-\frac{1}{3}\right)\left(\frac{1}{3}+x\right)
Express \frac{2}{3\left(2x-1\right)}\left(x-4\right) as a single fraction.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+\left(3x+3\left(-\frac{1}{3}\right)\right)\left(\frac{1}{3}+x\right)
Use the distributive property to multiply 3 by x-\frac{1}{3}.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+\left(3x-1\right)\left(\frac{1}{3}+x\right)
Cancel out 3 and 3.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+3x\times \frac{1}{3}+3x^{2}-\frac{1}{3}-x
Apply the distributive property by multiplying each term of 3x-1 by each term of \frac{1}{3}+x.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+x+3x^{2}-\frac{1}{3}-x
Cancel out 3 and 3.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+3x^{2}-\frac{1}{3}
Combine x and -x to get 0.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+3x^{2}-\frac{2x-1}{3\left(2x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(2x-1\right) and 3 is 3\left(2x-1\right). Multiply \frac{1}{3} times \frac{2x-1}{2x-1}.
\frac{2\left(x-4\right)-\left(2x-1\right)}{3\left(2x-1\right)}+3x^{2}
Since \frac{2\left(x-4\right)}{3\left(2x-1\right)} and \frac{2x-1}{3\left(2x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-8-2x+1}{3\left(2x-1\right)}+3x^{2}
Do the multiplications in 2\left(x-4\right)-\left(2x-1\right).
\frac{-7}{3\left(2x-1\right)}+3x^{2}
Combine like terms in 2x-8-2x+1.
\frac{-7}{3\left(2x-1\right)}+\frac{3x^{2}\times 3\left(2x-1\right)}{3\left(2x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x^{2} times \frac{3\left(2x-1\right)}{3\left(2x-1\right)}.
\frac{-7+3x^{2}\times 3\left(2x-1\right)}{3\left(2x-1\right)}
Since \frac{-7}{3\left(2x-1\right)} and \frac{3x^{2}\times 3\left(2x-1\right)}{3\left(2x-1\right)} have the same denominator, add them by adding their numerators.
\frac{-7+18x^{3}-9x^{2}}{3\left(2x-1\right)}
Do the multiplications in -7+3x^{2}\times 3\left(2x-1\right).
\frac{-7+18x^{3}-9x^{2}}{6x-3}
Expand 3\left(2x-1\right).
\frac{2}{3\left(2x-1\right)}\left(x-4\right)+3\left(x-\frac{1}{3}\right)\left(\frac{1}{3}+x\right)
Express \frac{\frac{2}{3}}{2x-1} as a single fraction.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+3\left(x-\frac{1}{3}\right)\left(\frac{1}{3}+x\right)
Express \frac{2}{3\left(2x-1\right)}\left(x-4\right) as a single fraction.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+\left(3x+3\left(-\frac{1}{3}\right)\right)\left(\frac{1}{3}+x\right)
Use the distributive property to multiply 3 by x-\frac{1}{3}.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+\left(3x-1\right)\left(\frac{1}{3}+x\right)
Cancel out 3 and 3.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+3x\times \frac{1}{3}+3x^{2}-\frac{1}{3}-x
Apply the distributive property by multiplying each term of 3x-1 by each term of \frac{1}{3}+x.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+x+3x^{2}-\frac{1}{3}-x
Cancel out 3 and 3.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+3x^{2}-\frac{1}{3}
Combine x and -x to get 0.
\frac{2\left(x-4\right)}{3\left(2x-1\right)}+3x^{2}-\frac{2x-1}{3\left(2x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(2x-1\right) and 3 is 3\left(2x-1\right). Multiply \frac{1}{3} times \frac{2x-1}{2x-1}.
\frac{2\left(x-4\right)-\left(2x-1\right)}{3\left(2x-1\right)}+3x^{2}
Since \frac{2\left(x-4\right)}{3\left(2x-1\right)} and \frac{2x-1}{3\left(2x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-8-2x+1}{3\left(2x-1\right)}+3x^{2}
Do the multiplications in 2\left(x-4\right)-\left(2x-1\right).
\frac{-7}{3\left(2x-1\right)}+3x^{2}
Combine like terms in 2x-8-2x+1.
\frac{-7}{3\left(2x-1\right)}+\frac{3x^{2}\times 3\left(2x-1\right)}{3\left(2x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x^{2} times \frac{3\left(2x-1\right)}{3\left(2x-1\right)}.
\frac{-7+3x^{2}\times 3\left(2x-1\right)}{3\left(2x-1\right)}
Since \frac{-7}{3\left(2x-1\right)} and \frac{3x^{2}\times 3\left(2x-1\right)}{3\left(2x-1\right)} have the same denominator, add them by adding their numerators.
\frac{-7+18x^{3}-9x^{2}}{3\left(2x-1\right)}
Do the multiplications in -7+3x^{2}\times 3\left(2x-1\right).
\frac{-7+18x^{3}-9x^{2}}{6x-3}
Expand 3\left(2x-1\right).