Evaluate
\frac{3163}{3}\approx 1054.333333333
Factor
\frac{3163}{3} = 1054\frac{1}{3} = 1054.3333333333333
Share
Copied to clipboard
\frac{2}{3}+\frac{27+2}{3}+9\times \frac{9\times 3+2}{3}+99\times \frac{9\times 3+2}{3}
Multiply 9 and 3 to get 27.
\frac{2}{3}+\frac{29}{3}+9\times \frac{9\times 3+2}{3}+99\times \frac{9\times 3+2}{3}
Add 27 and 2 to get 29.
\frac{2+29}{3}+9\times \frac{9\times 3+2}{3}+99\times \frac{9\times 3+2}{3}
Since \frac{2}{3} and \frac{29}{3} have the same denominator, add them by adding their numerators.
\frac{31}{3}+9\times \frac{9\times 3+2}{3}+99\times \frac{9\times 3+2}{3}
Add 2 and 29 to get 31.
\frac{31}{3}+9\times \frac{27+2}{3}+99\times \frac{9\times 3+2}{3}
Multiply 9 and 3 to get 27.
\frac{31}{3}+9\times \frac{29}{3}+99\times \frac{9\times 3+2}{3}
Add 27 and 2 to get 29.
\frac{31}{3}+\frac{9\times 29}{3}+99\times \frac{9\times 3+2}{3}
Express 9\times \frac{29}{3} as a single fraction.
\frac{31}{3}+\frac{261}{3}+99\times \frac{9\times 3+2}{3}
Multiply 9 and 29 to get 261.
\frac{31+261}{3}+99\times \frac{9\times 3+2}{3}
Since \frac{31}{3} and \frac{261}{3} have the same denominator, add them by adding their numerators.
\frac{292}{3}+99\times \frac{9\times 3+2}{3}
Add 31 and 261 to get 292.
\frac{292}{3}+99\times \frac{27+2}{3}
Multiply 9 and 3 to get 27.
\frac{292}{3}+99\times \frac{29}{3}
Add 27 and 2 to get 29.
\frac{292}{3}+\frac{99\times 29}{3}
Express 99\times \frac{29}{3} as a single fraction.
\frac{292}{3}+\frac{2871}{3}
Multiply 99 and 29 to get 2871.
\frac{292+2871}{3}
Since \frac{292}{3} and \frac{2871}{3} have the same denominator, add them by adding their numerators.
\frac{3163}{3}
Add 292 and 2871 to get 3163.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}