Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{10}{15}+\frac{12}{15}-\frac{1}{2}+\frac{3}{4}-\left(-2+\frac{1}{3}\right)\times \frac{4}{5}
Least common multiple of 3 and 5 is 15. Convert \frac{2}{3} and \frac{4}{5} to fractions with denominator 15.
\frac{10+12}{15}-\frac{1}{2}+\frac{3}{4}-\left(-2+\frac{1}{3}\right)\times \frac{4}{5}
Since \frac{10}{15} and \frac{12}{15} have the same denominator, add them by adding their numerators.
\frac{22}{15}-\frac{1}{2}+\frac{3}{4}-\left(-2+\frac{1}{3}\right)\times \frac{4}{5}
Add 10 and 12 to get 22.
\frac{44}{30}-\frac{15}{30}+\frac{3}{4}-\left(-2+\frac{1}{3}\right)\times \frac{4}{5}
Least common multiple of 15 and 2 is 30. Convert \frac{22}{15} and \frac{1}{2} to fractions with denominator 30.
\frac{44-15}{30}+\frac{3}{4}-\left(-2+\frac{1}{3}\right)\times \frac{4}{5}
Since \frac{44}{30} and \frac{15}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{29}{30}+\frac{3}{4}-\left(-2+\frac{1}{3}\right)\times \frac{4}{5}
Subtract 15 from 44 to get 29.
\frac{58}{60}+\frac{45}{60}-\left(-2+\frac{1}{3}\right)\times \frac{4}{5}
Least common multiple of 30 and 4 is 60. Convert \frac{29}{30} and \frac{3}{4} to fractions with denominator 60.
\frac{58+45}{60}-\left(-2+\frac{1}{3}\right)\times \frac{4}{5}
Since \frac{58}{60} and \frac{45}{60} have the same denominator, add them by adding their numerators.
\frac{103}{60}-\left(-2+\frac{1}{3}\right)\times \frac{4}{5}
Add 58 and 45 to get 103.
\frac{103}{60}-\left(-\frac{6}{3}+\frac{1}{3}\right)\times \frac{4}{5}
Convert -2 to fraction -\frac{6}{3}.
\frac{103}{60}-\frac{-6+1}{3}\times \frac{4}{5}
Since -\frac{6}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{103}{60}-\left(-\frac{5}{3}\times \frac{4}{5}\right)
Add -6 and 1 to get -5.
\frac{103}{60}-\frac{-5\times 4}{3\times 5}
Multiply -\frac{5}{3} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{103}{60}-\frac{-20}{15}
Do the multiplications in the fraction \frac{-5\times 4}{3\times 5}.
\frac{103}{60}-\left(-\frac{4}{3}\right)
Reduce the fraction \frac{-20}{15} to lowest terms by extracting and canceling out 5.
\frac{103}{60}+\frac{4}{3}
The opposite of -\frac{4}{3} is \frac{4}{3}.
\frac{103}{60}+\frac{80}{60}
Least common multiple of 60 and 3 is 60. Convert \frac{103}{60} and \frac{4}{3} to fractions with denominator 60.
\frac{103+80}{60}
Since \frac{103}{60} and \frac{80}{60} have the same denominator, add them by adding their numerators.
\frac{183}{60}
Add 103 and 80 to get 183.
\frac{61}{20}
Reduce the fraction \frac{183}{60} to lowest terms by extracting and canceling out 3.