Evaluate
\frac{613}{360}\approx 1.702777778
Factor
\frac{613}{2 ^ {3} \cdot 3 ^ {2} \cdot 5} = 1\frac{253}{360} = 1.7027777777777777
Share
Copied to clipboard
\frac{10}{15}+\frac{12}{15}-\frac{8}{9}+\frac{\frac{9}{6}}{\frac{4}{3}}
Least common multiple of 3 and 5 is 15. Convert \frac{2}{3} and \frac{4}{5} to fractions with denominator 15.
\frac{10+12}{15}-\frac{8}{9}+\frac{\frac{9}{6}}{\frac{4}{3}}
Since \frac{10}{15} and \frac{12}{15} have the same denominator, add them by adding their numerators.
\frac{22}{15}-\frac{8}{9}+\frac{\frac{9}{6}}{\frac{4}{3}}
Add 10 and 12 to get 22.
\frac{66}{45}-\frac{40}{45}+\frac{\frac{9}{6}}{\frac{4}{3}}
Least common multiple of 15 and 9 is 45. Convert \frac{22}{15} and \frac{8}{9} to fractions with denominator 45.
\frac{66-40}{45}+\frac{\frac{9}{6}}{\frac{4}{3}}
Since \frac{66}{45} and \frac{40}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{26}{45}+\frac{\frac{9}{6}}{\frac{4}{3}}
Subtract 40 from 66 to get 26.
\frac{26}{45}+\frac{9\times 3}{6\times 4}
Divide \frac{9}{6} by \frac{4}{3} by multiplying \frac{9}{6} by the reciprocal of \frac{4}{3}.
\frac{26}{45}+\frac{3\times 3}{2\times 4}
Cancel out 3 in both numerator and denominator.
\frac{26}{45}+\frac{9}{2\times 4}
Multiply 3 and 3 to get 9.
\frac{26}{45}+\frac{9}{8}
Multiply 2 and 4 to get 8.
\frac{208}{360}+\frac{405}{360}
Least common multiple of 45 and 8 is 360. Convert \frac{26}{45} and \frac{9}{8} to fractions with denominator 360.
\frac{208+405}{360}
Since \frac{208}{360} and \frac{405}{360} have the same denominator, add them by adding their numerators.
\frac{613}{360}
Add 208 and 405 to get 613.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}