Evaluate
\frac{31}{60}\approx 0.516666667
Factor
\frac{31}{2 ^ {2} \cdot 3 \cdot 5} = 0.5166666666666667
Share
Copied to clipboard
\frac{2}{3}+\frac{3\times 1}{4\times 5}\times \frac{2}{3}-\frac{1}{4}
Multiply \frac{3}{4} times \frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}+\frac{3}{20}\times \frac{2}{3}-\frac{1}{4}
Do the multiplications in the fraction \frac{3\times 1}{4\times 5}.
\frac{2}{3}+\frac{3\times 2}{20\times 3}-\frac{1}{4}
Multiply \frac{3}{20} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}+\frac{2}{20}-\frac{1}{4}
Cancel out 3 in both numerator and denominator.
\frac{2}{3}+\frac{1}{10}-\frac{1}{4}
Reduce the fraction \frac{2}{20} to lowest terms by extracting and canceling out 2.
\frac{20}{30}+\frac{3}{30}-\frac{1}{4}
Least common multiple of 3 and 10 is 30. Convert \frac{2}{3} and \frac{1}{10} to fractions with denominator 30.
\frac{20+3}{30}-\frac{1}{4}
Since \frac{20}{30} and \frac{3}{30} have the same denominator, add them by adding their numerators.
\frac{23}{30}-\frac{1}{4}
Add 20 and 3 to get 23.
\frac{46}{60}-\frac{15}{60}
Least common multiple of 30 and 4 is 60. Convert \frac{23}{30} and \frac{1}{4} to fractions with denominator 60.
\frac{46-15}{60}
Since \frac{46}{60} and \frac{15}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{31}{60}
Subtract 15 from 46 to get 31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}