Verify
false
Share
Copied to clipboard
\frac{8}{12}+\frac{3}{12}+\frac{4}{5}=\frac{101}{60}
Least common multiple of 3 and 4 is 12. Convert \frac{2}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{8+3}{12}+\frac{4}{5}=\frac{101}{60}
Since \frac{8}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{11}{12}+\frac{4}{5}=\frac{101}{60}
Add 8 and 3 to get 11.
\frac{55}{60}+\frac{48}{60}=\frac{101}{60}
Least common multiple of 12 and 5 is 60. Convert \frac{11}{12} and \frac{4}{5} to fractions with denominator 60.
\frac{55+48}{60}=\frac{101}{60}
Since \frac{55}{60} and \frac{48}{60} have the same denominator, add them by adding their numerators.
\frac{103}{60}=\frac{101}{60}
Add 55 and 48 to get 103.
\text{false}
Compare \frac{103}{60} and \frac{101}{60}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}