Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-2i.
\frac{2\left(3-2i\right)}{3^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(3-2i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 3+2\times \left(-2i\right)}{13}
Multiply 2 times 3-2i.
\frac{6-4i}{13}
Do the multiplications in 2\times 3+2\times \left(-2i\right).
\frac{6}{13}-\frac{4}{13}i
Divide 6-4i by 13 to get \frac{6}{13}-\frac{4}{13}i.
Re(\frac{2\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)})
Multiply both numerator and denominator of \frac{2}{3+2i} by the complex conjugate of the denominator, 3-2i.
Re(\frac{2\left(3-2i\right)}{3^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2\left(3-2i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 3+2\times \left(-2i\right)}{13})
Multiply 2 times 3-2i.
Re(\frac{6-4i}{13})
Do the multiplications in 2\times 3+2\times \left(-2i\right).
Re(\frac{6}{13}-\frac{4}{13}i)
Divide 6-4i by 13 to get \frac{6}{13}-\frac{4}{13}i.
\frac{6}{13}
The real part of \frac{6}{13}-\frac{4}{13}i is \frac{6}{13}.