Skip to main content
Evaluate (complex solution)
Tick mark Image
Evaluate
Tick mark Image
Real Part (complex solution)
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{\left(3+\sqrt{-5}\right)\times 3}
Express \frac{\frac{2}{3+\sqrt{-5}}}{3} as a single fraction.
\frac{2}{\left(3+\sqrt{5}i\right)\times 3}
Factor -5=5\left(-1\right). Rewrite the square root of the product \sqrt{5\left(-1\right)} as the product of square roots \sqrt{5}\sqrt{-1}. By definition, the square root of -1 is i.
\frac{2}{9+3\sqrt{5}i}
Use the distributive property to multiply 3+\sqrt{5}i by 3.
\frac{2}{9+3i\sqrt{5}}
Multiply 3 and i to get 3i.
\frac{2\left(9-3i\sqrt{5}\right)}{\left(9+3i\sqrt{5}\right)\left(9-3i\sqrt{5}\right)}
Rationalize the denominator of \frac{2}{9+3i\sqrt{5}} by multiplying numerator and denominator by 9-3i\sqrt{5}.
\frac{2\left(9-3i\sqrt{5}\right)}{9^{2}-\left(3i\sqrt{5}\right)^{2}}
Consider \left(9+3i\sqrt{5}\right)\left(9-3i\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(9-3i\sqrt{5}\right)}{81-\left(3i\sqrt{5}\right)^{2}}
Calculate 9 to the power of 2 and get 81.
\frac{2\left(9-3i\sqrt{5}\right)}{81-\left(3i\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(3i\sqrt{5}\right)^{2}.
\frac{2\left(9-3i\sqrt{5}\right)}{81-\left(-9\left(\sqrt{5}\right)^{2}\right)}
Calculate 3i to the power of 2 and get -9.
\frac{2\left(9-3i\sqrt{5}\right)}{81-\left(-9\times 5\right)}
The square of \sqrt{5} is 5.
\frac{2\left(9-3i\sqrt{5}\right)}{81-\left(-45\right)}
Multiply -9 and 5 to get -45.
\frac{2\left(9-3i\sqrt{5}\right)}{81+45}
Multiply -1 and -45 to get 45.
\frac{2\left(9-3i\sqrt{5}\right)}{126}
Add 81 and 45 to get 126.
\frac{1}{63}\left(9-3i\sqrt{5}\right)
Divide 2\left(9-3i\sqrt{5}\right) by 126 to get \frac{1}{63}\left(9-3i\sqrt{5}\right).
\frac{1}{63}\times 9+\frac{1}{63}\times \left(-3i\right)\sqrt{5}
Use the distributive property to multiply \frac{1}{63} by 9-3i\sqrt{5}.
\frac{9}{63}+\frac{1}{63}\times \left(-3i\right)\sqrt{5}
Multiply \frac{1}{63} and 9 to get \frac{9}{63}.
\frac{1}{7}+\frac{1}{63}\times \left(-3i\right)\sqrt{5}
Reduce the fraction \frac{9}{63} to lowest terms by extracting and canceling out 9.
\frac{1}{7}-\frac{1}{21}i\sqrt{5}
Multiply \frac{1}{63} and -3i to get -\frac{1}{21}i.
\frac{2}{\left(3+\sqrt{-5}\right)\times 3}
Express \frac{\frac{2}{3+\sqrt{-5}}}{3} as a single fraction.
\frac{2}{9+3\sqrt{-5}}
Use the distributive property to multiply 3+\sqrt{-5} by 3.
\frac{2\left(9-3\sqrt{-5}\right)}{\left(9+3\sqrt{-5}\right)\left(9-3\sqrt{-5}\right)}
Rationalize the denominator of \frac{2}{9+3\sqrt{-5}} by multiplying numerator and denominator by 9-3\sqrt{-5}.
\frac{2\left(9-3\sqrt{-5}\right)}{9^{2}-\left(3\sqrt{-5}\right)^{2}}
Consider \left(9+3\sqrt{-5}\right)\left(9-3\sqrt{-5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(9-3\sqrt{-5}\right)}{81-\left(3\sqrt{-5}\right)^{2}}
Calculate 9 to the power of 2 and get 81.
\frac{2\left(9-3\sqrt{-5}\right)}{81-3^{2}\left(\sqrt{-5}\right)^{2}}
Expand \left(3\sqrt{-5}\right)^{2}.
\frac{2\left(9-3\sqrt{-5}\right)}{81-9\left(\sqrt{-5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{2\left(9-3\sqrt{-5}\right)}{81-9\left(-5\right)}
Calculate \sqrt{-5} to the power of 2 and get -5.
\frac{2\left(9-3\sqrt{-5}\right)}{81-\left(-45\right)}
Multiply 9 and -5 to get -45.
\frac{2\left(9-3\sqrt{-5}\right)}{81+45}
Multiply -1 and -45 to get 45.
\frac{2\left(9-3\sqrt{-5}\right)}{126}
Add 81 and 45 to get 126.
\frac{1}{63}\left(9-3\sqrt{-5}\right)
Divide 2\left(9-3\sqrt{-5}\right) by 126 to get \frac{1}{63}\left(9-3\sqrt{-5}\right).
\frac{1}{63}\times 9+\frac{1}{63}\left(-3\right)\sqrt{-5}
Use the distributive property to multiply \frac{1}{63} by 9-3\sqrt{-5}.
\frac{9}{63}+\frac{1}{63}\left(-3\right)\sqrt{-5}
Multiply \frac{1}{63} and 9 to get \frac{9}{63}.
\frac{1}{7}+\frac{1}{63}\left(-3\right)\sqrt{-5}
Reduce the fraction \frac{9}{63} to lowest terms by extracting and canceling out 9.
\frac{1}{7}+\frac{-3}{63}\sqrt{-5}
Multiply \frac{1}{63} and -3 to get \frac{-3}{63}.
\frac{1}{7}-\frac{1}{21}\sqrt{-5}
Reduce the fraction \frac{-3}{63} to lowest terms by extracting and canceling out 3.