Solve for x
x = \frac{15}{2} = 7\frac{1}{2} = 7.5
Graph
Share
Copied to clipboard
\left(2x+3\right)\times 2+\left(2x-3\right)\times 2x=\left(2x-3\right)\left(2x+3\right)
Variable x cannot be equal to any of the values -\frac{3}{2},\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-3\right)\left(2x+3\right), the least common multiple of 2x-3,2x+3.
4x+6+\left(2x-3\right)\times 2x=\left(2x-3\right)\left(2x+3\right)
Use the distributive property to multiply 2x+3 by 2.
4x+6+\left(4x-6\right)x=\left(2x-3\right)\left(2x+3\right)
Use the distributive property to multiply 2x-3 by 2.
4x+6+4x^{2}-6x=\left(2x-3\right)\left(2x+3\right)
Use the distributive property to multiply 4x-6 by x.
-2x+6+4x^{2}=\left(2x-3\right)\left(2x+3\right)
Combine 4x and -6x to get -2x.
-2x+6+4x^{2}=\left(2x\right)^{2}-9
Consider \left(2x-3\right)\left(2x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
-2x+6+4x^{2}=2^{2}x^{2}-9
Expand \left(2x\right)^{2}.
-2x+6+4x^{2}=4x^{2}-9
Calculate 2 to the power of 2 and get 4.
-2x+6+4x^{2}-4x^{2}=-9
Subtract 4x^{2} from both sides.
-2x+6=-9
Combine 4x^{2} and -4x^{2} to get 0.
-2x=-9-6
Subtract 6 from both sides.
-2x=-15
Subtract 6 from -9 to get -15.
x=\frac{-15}{-2}
Divide both sides by -2.
x=\frac{15}{2}
Fraction \frac{-15}{-2} can be simplified to \frac{15}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}