Solve for x
x=\frac{\left(7n-3\right)^{2}}{4}
n\neq \frac{3}{7}
Solve for n (complex solution)
n=\frac{2\sqrt{x}+3}{7}
n=\frac{-2\sqrt{x}+3}{7}\text{, }x\neq 0
Solve for n
n=\frac{-2\sqrt{x}+3}{7}
n=\frac{2\sqrt{x}+3}{7}\text{, }x>0
Graph
Share
Copied to clipboard
2\left(7n-3\right)^{2}=8x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x.
2\left(49n^{2}-42n+9\right)=8x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7n-3\right)^{2}.
98n^{2}-84n+18=8x
Use the distributive property to multiply 2 by 49n^{2}-42n+9.
8x=98n^{2}-84n+18
Swap sides so that all variable terms are on the left hand side.
\frac{8x}{8}=\frac{2\left(7n-3\right)^{2}}{8}
Divide both sides by 8.
x=\frac{2\left(7n-3\right)^{2}}{8}
Dividing by 8 undoes the multiplication by 8.
x=\frac{\left(7n-3\right)^{2}}{4}
Divide 2\left(-3+7n\right)^{2} by 8.
x=\frac{\left(7n-3\right)^{2}}{4}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}