Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}-\frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a+3 and 3-2a is \left(-2a+3\right)\left(2a+3\right). Multiply \frac{2}{2a+3} times \frac{-2a+3}{-2a+3}. Multiply \frac{1}{3-2a} times \frac{2a+3}{2a+3}.
\frac{2\left(-2a+3\right)-\left(2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}
Since \frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)} and \frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a+6-2a-3}{\left(-2a+3\right)\left(2a+3\right)}
Do the multiplications in 2\left(-2a+3\right)-\left(2a+3\right).
\frac{-6a+3}{\left(-2a+3\right)\left(2a+3\right)}
Combine like terms in -4a+6-2a-3.
\frac{-6a+3}{-4a^{2}+9}
Expand \left(-2a+3\right)\left(2a+3\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}-\frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a+3 and 3-2a is \left(-2a+3\right)\left(2a+3\right). Multiply \frac{2}{2a+3} times \frac{-2a+3}{-2a+3}. Multiply \frac{1}{3-2a} times \frac{2a+3}{2a+3}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(-2a+3\right)-\left(2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)})
Since \frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)} and \frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-4a+6-2a-3}{\left(-2a+3\right)\left(2a+3\right)})
Do the multiplications in 2\left(-2a+3\right)-\left(2a+3\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{\left(-2a+3\right)\left(2a+3\right)})
Combine like terms in -4a+6-2a-3.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{-4a^{2}-6a+6a+9})
Apply the distributive property by multiplying each term of -2a+3 by each term of 2a+3.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{-4a^{2}+9})
Combine -6a and 6a to get 0.
\frac{\left(-4a^{2}+9\right)\frac{\mathrm{d}}{\mathrm{d}a}(-6a^{1}+3)-\left(-6a^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}a}(-4a^{2}+9)}{\left(-4a^{2}+9\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(-4a^{2}+9\right)\left(-6\right)a^{1-1}-\left(-6a^{1}+3\right)\times 2\left(-4\right)a^{2-1}}{\left(-4a^{2}+9\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(-4a^{2}+9\right)\left(-6\right)a^{0}-\left(-6a^{1}+3\right)\left(-8\right)a^{1}}{\left(-4a^{2}+9\right)^{2}}
Do the arithmetic.
\frac{-4a^{2}\left(-6\right)a^{0}+9\left(-6\right)a^{0}-\left(-6a^{1}\left(-8\right)a^{1}+3\left(-8\right)a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
Expand using distributive property.
\frac{-4\left(-6\right)a^{2}+9\left(-6\right)a^{0}-\left(-6\left(-8\right)a^{1+1}+3\left(-8\right)a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{24a^{2}-54a^{0}-\left(48a^{2}-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
Do the arithmetic.
\frac{24a^{2}-54a^{0}-48a^{2}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
Remove unnecessary parentheses.
\frac{\left(24-48\right)a^{2}-54a^{0}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
Combine like terms.
\frac{-24a^{2}-54a^{0}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
Subtract 48 from 24.
\frac{-24a^{2}-54a^{0}-\left(-24a\right)}{\left(-4a^{2}+9\right)^{2}}
For any term t, t^{1}=t.
\frac{-24a^{2}-54-\left(-24a\right)}{\left(-4a^{2}+9\right)^{2}}
For any term t except 0, t^{0}=1.