Solve for y
y=\frac{8+2\sqrt{29}i}{15}\approx 0.533333333+0.718021974i
y=\frac{-2\sqrt{29}i+8}{15}\approx 0.533333333-0.718021974i
Quiz
Complex Number
5 problems similar to:
\frac { 2 } { 2 - 3 y } + \frac { 1 } { y } = \frac { 5 } { 6 }
Share
Copied to clipboard
-6y\times 2+18y-12=5y\left(3y-2\right)
Variable y cannot be equal to any of the values 0,\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 6y\left(3y-2\right), the least common multiple of 2-3y,y,6.
-12y+18y-12=5y\left(3y-2\right)
Multiply -6 and 2 to get -12.
6y-12=5y\left(3y-2\right)
Combine -12y and 18y to get 6y.
6y-12=15y^{2}-10y
Use the distributive property to multiply 5y by 3y-2.
6y-12-15y^{2}=-10y
Subtract 15y^{2} from both sides.
6y-12-15y^{2}+10y=0
Add 10y to both sides.
16y-12-15y^{2}=0
Combine 6y and 10y to get 16y.
-15y^{2}+16y-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-16±\sqrt{16^{2}-4\left(-15\right)\left(-12\right)}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 16 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-16±\sqrt{256-4\left(-15\right)\left(-12\right)}}{2\left(-15\right)}
Square 16.
y=\frac{-16±\sqrt{256+60\left(-12\right)}}{2\left(-15\right)}
Multiply -4 times -15.
y=\frac{-16±\sqrt{256-720}}{2\left(-15\right)}
Multiply 60 times -12.
y=\frac{-16±\sqrt{-464}}{2\left(-15\right)}
Add 256 to -720.
y=\frac{-16±4\sqrt{29}i}{2\left(-15\right)}
Take the square root of -464.
y=\frac{-16±4\sqrt{29}i}{-30}
Multiply 2 times -15.
y=\frac{-16+4\sqrt{29}i}{-30}
Now solve the equation y=\frac{-16±4\sqrt{29}i}{-30} when ± is plus. Add -16 to 4i\sqrt{29}.
y=\frac{-2\sqrt{29}i+8}{15}
Divide -16+4i\sqrt{29} by -30.
y=\frac{-4\sqrt{29}i-16}{-30}
Now solve the equation y=\frac{-16±4\sqrt{29}i}{-30} when ± is minus. Subtract 4i\sqrt{29} from -16.
y=\frac{8+2\sqrt{29}i}{15}
Divide -16-4i\sqrt{29} by -30.
y=\frac{-2\sqrt{29}i+8}{15} y=\frac{8+2\sqrt{29}i}{15}
The equation is now solved.
-6y\times 2+18y-12=5y\left(3y-2\right)
Variable y cannot be equal to any of the values 0,\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 6y\left(3y-2\right), the least common multiple of 2-3y,y,6.
-12y+18y-12=5y\left(3y-2\right)
Multiply -6 and 2 to get -12.
6y-12=5y\left(3y-2\right)
Combine -12y and 18y to get 6y.
6y-12=15y^{2}-10y
Use the distributive property to multiply 5y by 3y-2.
6y-12-15y^{2}=-10y
Subtract 15y^{2} from both sides.
6y-12-15y^{2}+10y=0
Add 10y to both sides.
16y-12-15y^{2}=0
Combine 6y and 10y to get 16y.
16y-15y^{2}=12
Add 12 to both sides. Anything plus zero gives itself.
-15y^{2}+16y=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-15y^{2}+16y}{-15}=\frac{12}{-15}
Divide both sides by -15.
y^{2}+\frac{16}{-15}y=\frac{12}{-15}
Dividing by -15 undoes the multiplication by -15.
y^{2}-\frac{16}{15}y=\frac{12}{-15}
Divide 16 by -15.
y^{2}-\frac{16}{15}y=-\frac{4}{5}
Reduce the fraction \frac{12}{-15} to lowest terms by extracting and canceling out 3.
y^{2}-\frac{16}{15}y+\left(-\frac{8}{15}\right)^{2}=-\frac{4}{5}+\left(-\frac{8}{15}\right)^{2}
Divide -\frac{16}{15}, the coefficient of the x term, by 2 to get -\frac{8}{15}. Then add the square of -\frac{8}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{16}{15}y+\frac{64}{225}=-\frac{4}{5}+\frac{64}{225}
Square -\frac{8}{15} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{16}{15}y+\frac{64}{225}=-\frac{116}{225}
Add -\frac{4}{5} to \frac{64}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{8}{15}\right)^{2}=-\frac{116}{225}
Factor y^{2}-\frac{16}{15}y+\frac{64}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{8}{15}\right)^{2}}=\sqrt{-\frac{116}{225}}
Take the square root of both sides of the equation.
y-\frac{8}{15}=\frac{2\sqrt{29}i}{15} y-\frac{8}{15}=-\frac{2\sqrt{29}i}{15}
Simplify.
y=\frac{8+2\sqrt{29}i}{15} y=\frac{-2\sqrt{29}i+8}{15}
Add \frac{8}{15} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}