Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(2\sqrt{6}-1\right)}{\left(2\sqrt{6}+1\right)\left(2\sqrt{6}-1\right)}
Rationalize the denominator of \frac{2}{2\sqrt{6}+1} by multiplying numerator and denominator by 2\sqrt{6}-1.
\frac{2\left(2\sqrt{6}-1\right)}{\left(2\sqrt{6}\right)^{2}-1^{2}}
Consider \left(2\sqrt{6}+1\right)\left(2\sqrt{6}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(2\sqrt{6}-1\right)}{2^{2}\left(\sqrt{6}\right)^{2}-1^{2}}
Expand \left(2\sqrt{6}\right)^{2}.
\frac{2\left(2\sqrt{6}-1\right)}{4\left(\sqrt{6}\right)^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\left(2\sqrt{6}-1\right)}{4\times 6-1^{2}}
The square of \sqrt{6} is 6.
\frac{2\left(2\sqrt{6}-1\right)}{24-1^{2}}
Multiply 4 and 6 to get 24.
\frac{2\left(2\sqrt{6}-1\right)}{24-1}
Calculate 1 to the power of 2 and get 1.
\frac{2\left(2\sqrt{6}-1\right)}{23}
Subtract 1 from 24 to get 23.
\frac{4\sqrt{6}-2}{23}
Use the distributive property to multiply 2 by 2\sqrt{6}-1.