Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{2}{15}\right)^{1}a^{1}b^{3}}{\left(-\frac{4}{5}\right)^{1}a^{1}b^{1}}
Use the rules of exponents to simplify the expression.
\frac{\left(\frac{2}{15}\right)^{1}}{\left(-\frac{4}{5}\right)^{1}}a^{1-1}b^{3-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(\frac{2}{15}\right)^{1}}{\left(-\frac{4}{5}\right)^{1}}a^{0}b^{3-1}
Subtract 1 from 1.
\frac{\left(\frac{2}{15}\right)^{1}}{\left(-\frac{4}{5}\right)^{1}}b^{3-1}
For any number a except 0, a^{0}=1.
\frac{\left(\frac{2}{15}\right)^{1}}{\left(-\frac{4}{5}\right)^{1}}b^{2}
Subtract 1 from 3.
-\frac{1}{6}b^{2}
Divide \frac{2}{15} by -\frac{4}{5} by multiplying \frac{2}{15} by the reciprocal of -\frac{4}{5}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{2}{15}b^{2}}{-\frac{4}{5}})
Cancel out ab in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{2}{15}b^{2}\times 5}{-4})
Divide \frac{2}{15}b^{2} by -\frac{4}{5} by multiplying \frac{2}{15}b^{2} by the reciprocal of -\frac{4}{5}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{2}{3}b^{2}}{-4})
Multiply \frac{2}{15} and 5 to get \frac{2}{3}.
\frac{\mathrm{d}}{\mathrm{d}b}(-\frac{1}{6}b^{2})
Divide \frac{2}{3}b^{2} by -4 to get -\frac{1}{6}b^{2}.
2\left(-\frac{1}{6}\right)b^{2-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{1}{3}b^{2-1}
Multiply 2 times -\frac{1}{6}.
-\frac{1}{3}b^{1}
Subtract 1 from 2.
-\frac{1}{3}b
For any term t, t^{1}=t.