\frac { 2 } { 15 } - [ 0.0 ( 6 ) - 3 \frac { 1 } { 6 } - ( \frac { 9 } { 10 } - 0 . ( 3 ) ) ]
Evaluate
\frac{21}{5}=4.2
Factor
\frac{3 \cdot 7}{5} = 4\frac{1}{5} = 4.2
Share
Copied to clipboard
\frac{2}{15}-\left(0-\frac{3\times 6+1}{6}-\left(\frac{9}{10}-0\times 3\right)\right)
Multiply 0 and 6 to get 0.
\frac{2}{15}-\left(0-\frac{18+1}{6}-\left(\frac{9}{10}-0\times 3\right)\right)
Multiply 3 and 6 to get 18.
\frac{2}{15}-\left(0-\frac{19}{6}-\left(\frac{9}{10}-0\times 3\right)\right)
Add 18 and 1 to get 19.
\frac{2}{15}-\left(-\frac{19}{6}-\left(\frac{9}{10}-0\times 3\right)\right)
Subtract \frac{19}{6} from 0 to get -\frac{19}{6}.
\frac{2}{15}-\left(-\frac{19}{6}-\left(\frac{9}{10}-0\right)\right)
Multiply 0 and 3 to get 0.
\frac{2}{15}-\left(-\frac{19}{6}-\frac{9}{10}\right)
Subtract 0 from \frac{9}{10} to get \frac{9}{10}.
\frac{2}{15}-\left(-\frac{95}{30}-\frac{27}{30}\right)
Least common multiple of 6 and 10 is 30. Convert -\frac{19}{6} and \frac{9}{10} to fractions with denominator 30.
\frac{2}{15}-\frac{-95-27}{30}
Since -\frac{95}{30} and \frac{27}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{15}-\frac{-122}{30}
Subtract 27 from -95 to get -122.
\frac{2}{15}-\left(-\frac{61}{15}\right)
Reduce the fraction \frac{-122}{30} to lowest terms by extracting and canceling out 2.
\frac{2}{15}+\frac{61}{15}
The opposite of -\frac{61}{15} is \frac{61}{15}.
\frac{2+61}{15}
Since \frac{2}{15} and \frac{61}{15} have the same denominator, add them by adding their numerators.
\frac{63}{15}
Add 2 and 61 to get 63.
\frac{21}{5}
Reduce the fraction \frac{63}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}