Evaluate
\frac{63\sqrt{10}}{11}\approx 18.111226599
Share
Copied to clipboard
\frac{2}{11}\sqrt{108\times \frac{5}{8}}\sqrt{147}
Calculate 108 to the power of 1 and get 108.
\frac{2}{11}\sqrt{\frac{108\times 5}{8}}\sqrt{147}
Express 108\times \frac{5}{8} as a single fraction.
\frac{2}{11}\sqrt{\frac{540}{8}}\sqrt{147}
Multiply 108 and 5 to get 540.
\frac{2}{11}\sqrt{\frac{135}{2}}\sqrt{147}
Reduce the fraction \frac{540}{8} to lowest terms by extracting and canceling out 4.
\frac{2}{11}\times \frac{\sqrt{135}}{\sqrt{2}}\sqrt{147}
Rewrite the square root of the division \sqrt{\frac{135}{2}} as the division of square roots \frac{\sqrt{135}}{\sqrt{2}}.
\frac{2}{11}\times \frac{3\sqrt{15}}{\sqrt{2}}\sqrt{147}
Factor 135=3^{2}\times 15. Rewrite the square root of the product \sqrt{3^{2}\times 15} as the product of square roots \sqrt{3^{2}}\sqrt{15}. Take the square root of 3^{2}.
\frac{2}{11}\times \frac{3\sqrt{15}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{147}
Rationalize the denominator of \frac{3\sqrt{15}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{2}{11}\times \frac{3\sqrt{15}\sqrt{2}}{2}\sqrt{147}
The square of \sqrt{2} is 2.
\frac{2}{11}\times \frac{3\sqrt{30}}{2}\sqrt{147}
To multiply \sqrt{15} and \sqrt{2}, multiply the numbers under the square root.
\frac{2}{11}\times \frac{3\sqrt{30}}{2}\times 7\sqrt{3}
Factor 147=7^{2}\times 3. Rewrite the square root of the product \sqrt{7^{2}\times 3} as the product of square roots \sqrt{7^{2}}\sqrt{3}. Take the square root of 7^{2}.
\frac{2\times 7}{11}\times \frac{3\sqrt{30}}{2}\sqrt{3}
Express \frac{2}{11}\times 7 as a single fraction.
\frac{14}{11}\times \frac{3\sqrt{30}}{2}\sqrt{3}
Multiply 2 and 7 to get 14.
\frac{14\times 3\sqrt{30}}{11\times 2}\sqrt{3}
Multiply \frac{14}{11} times \frac{3\sqrt{30}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3\times 7\sqrt{30}}{11}\sqrt{3}
Cancel out 2 in both numerator and denominator.
\frac{3\times 7\sqrt{30}\sqrt{3}}{11}
Express \frac{3\times 7\sqrt{30}}{11}\sqrt{3} as a single fraction.
\frac{3\times 7\sqrt{3}\sqrt{10}\sqrt{3}}{11}
Factor 30=3\times 10. Rewrite the square root of the product \sqrt{3\times 10} as the product of square roots \sqrt{3}\sqrt{10}.
\frac{3\times 7\times 3\sqrt{10}}{11}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{21\times 3\sqrt{10}}{11}
Multiply 3 and 7 to get 21.
\frac{63\sqrt{10}}{11}
Multiply 21 and 3 to get 63.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}