\frac { 2 } { 1,5 } = \frac { ( 2 + x ) } { 9 }
Solve for x
x=10
Graph
Share
Copied to clipboard
9\times \frac{2}{1,5}=2+x
Multiply both sides of the equation by 9.
9\times \frac{20}{15}=2+x
Expand \frac{2}{1,5} by multiplying both numerator and the denominator by 10.
9\times \frac{4}{3}=2+x
Reduce the fraction \frac{20}{15} to lowest terms by extracting and canceling out 5.
\frac{9\times 4}{3}=2+x
Express 9\times \frac{4}{3} as a single fraction.
\frac{36}{3}=2+x
Multiply 9 and 4 to get 36.
12=2+x
Divide 36 by 3 to get 12.
2+x=12
Swap sides so that all variable terms are on the left hand side.
x=12-2
Subtract 2 from both sides.
x=10
Subtract 2 from 12 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}