Solve for z
z=\frac{1}{5}=0.2
Share
Copied to clipboard
-\left(1+z\right)\times 2=\left(z-1\right)\times 3
Variable z cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(z-1\right)\left(z+1\right), the least common multiple of 1-z,1+z.
\left(-1-z\right)\times 2=\left(z-1\right)\times 3
To find the opposite of 1+z, find the opposite of each term.
-2-2z=\left(z-1\right)\times 3
Use the distributive property to multiply -1-z by 2.
-2-2z=3z-3
Use the distributive property to multiply z-1 by 3.
-2-2z-3z=-3
Subtract 3z from both sides.
-2-5z=-3
Combine -2z and -3z to get -5z.
-5z=-3+2
Add 2 to both sides.
-5z=-1
Add -3 and 2 to get -1.
z=\frac{-1}{-5}
Divide both sides by -5.
z=\frac{1}{5}
Fraction \frac{-1}{-5} can be simplified to \frac{1}{5} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}