Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4\times 2=\left(x-1\right)x
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-1\right), the least common multiple of 1-x,4.
-8=\left(x-1\right)x
Multiply -4 and 2 to get -8.
-8=x^{2}-x
Use the distributive property to multiply x-1 by x.
x^{2}-x=-8
Swap sides so that all variable terms are on the left hand side.
x^{2}-x+8=0
Add 8 to both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 8}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-32}}{2}
Multiply -4 times 8.
x=\frac{-\left(-1\right)±\sqrt{-31}}{2}
Add 1 to -32.
x=\frac{-\left(-1\right)±\sqrt{31}i}{2}
Take the square root of -31.
x=\frac{1±\sqrt{31}i}{2}
The opposite of -1 is 1.
x=\frac{1+\sqrt{31}i}{2}
Now solve the equation x=\frac{1±\sqrt{31}i}{2} when ± is plus. Add 1 to i\sqrt{31}.
x=\frac{-\sqrt{31}i+1}{2}
Now solve the equation x=\frac{1±\sqrt{31}i}{2} when ± is minus. Subtract i\sqrt{31} from 1.
x=\frac{1+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i+1}{2}
The equation is now solved.
-4\times 2=\left(x-1\right)x
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-1\right), the least common multiple of 1-x,4.
-8=\left(x-1\right)x
Multiply -4 and 2 to get -8.
-8=x^{2}-x
Use the distributive property to multiply x-1 by x.
x^{2}-x=-8
Swap sides so that all variable terms are on the left hand side.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-8+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-8+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{31}{4}
Add -8 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{31}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{31}i}{2} x-\frac{1}{2}=-\frac{\sqrt{31}i}{2}
Simplify.
x=\frac{1+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i+1}{2}
Add \frac{1}{2} to both sides of the equation.