Verify
false
Share
Copied to clipboard
\frac{2\times 2}{\frac{1}{3}}-\frac{2}{30}=\frac{\frac{1}{2}}{2}
Divide 2 by \frac{\frac{1}{3}}{2} by multiplying 2 by the reciprocal of \frac{\frac{1}{3}}{2}.
\frac{4}{\frac{1}{3}}-\frac{2}{30}=\frac{\frac{1}{2}}{2}
Multiply 2 and 2 to get 4.
4\times 3-\frac{2}{30}=\frac{\frac{1}{2}}{2}
Divide 4 by \frac{1}{3} by multiplying 4 by the reciprocal of \frac{1}{3}.
12-\frac{2}{30}=\frac{\frac{1}{2}}{2}
Multiply 4 and 3 to get 12.
12-\frac{1}{15}=\frac{\frac{1}{2}}{2}
Reduce the fraction \frac{2}{30} to lowest terms by extracting and canceling out 2.
\frac{180}{15}-\frac{1}{15}=\frac{\frac{1}{2}}{2}
Convert 12 to fraction \frac{180}{15}.
\frac{180-1}{15}=\frac{\frac{1}{2}}{2}
Since \frac{180}{15} and \frac{1}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{179}{15}=\frac{\frac{1}{2}}{2}
Subtract 1 from 180 to get 179.
\frac{179}{15}=\frac{1}{2\times 2}
Express \frac{\frac{1}{2}}{2} as a single fraction.
\frac{179}{15}=\frac{1}{4}
Multiply 2 and 2 to get 4.
\frac{716}{60}=\frac{15}{60}
Least common multiple of 15 and 4 is 60. Convert \frac{179}{15} and \frac{1}{4} to fractions with denominator 60.
\text{false}
Compare \frac{716}{60} and \frac{15}{60}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}