Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+\frac{2}{1}
Multiply both numerator and denominator of \frac{2}{1+i} by the complex conjugate of the denominator, 1-i.
\frac{2\left(1-i\right)}{1^{2}-i^{2}}+\frac{2}{1}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(1-i\right)}{2}+\frac{2}{1}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 1+2\left(-i\right)}{2}+\frac{2}{1}
Multiply 2 times 1-i.
\frac{2-2i}{2}+\frac{2}{1}
Do the multiplications in 2\times 1+2\left(-i\right).
1-i+\frac{2}{1}
Divide 2-2i by 2 to get 1-i.
1-i+2
Anything divided by one gives itself.
1+2-i
Combine the real and imaginary parts in numbers 1-i and 2.
3-i
Add 1 to 2.
Re(\frac{2\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+\frac{2}{1})
Multiply both numerator and denominator of \frac{2}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{2\left(1-i\right)}{1^{2}-i^{2}}+\frac{2}{1})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2\left(1-i\right)}{2}+\frac{2}{1})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 1+2\left(-i\right)}{2}+\frac{2}{1})
Multiply 2 times 1-i.
Re(\frac{2-2i}{2}+\frac{2}{1})
Do the multiplications in 2\times 1+2\left(-i\right).
Re(1-i+\frac{2}{1})
Divide 2-2i by 2 to get 1-i.
Re(1-i+2)
Anything divided by one gives itself.
Re(1+2-i)
Combine the real and imaginary parts in numbers 1-i and 2.
Re(3-i)
Add 1 to 2.
3
The real part of 3-i is 3.