Solve for x
x=-\frac{\sqrt{5}}{30}+\frac{1}{6}\approx 0.092131067
x=\frac{\sqrt{5}}{30}+\frac{1}{6}\approx 0.241202266
Graph
Share
Copied to clipboard
2=10\left(6x-1\right)^{2}
Variable x cannot be equal to \frac{1}{6} since division by zero is not defined. Multiply both sides of the equation by \left(6x-1\right)^{2}.
2=10\left(36x^{2}-12x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-1\right)^{2}.
2=360x^{2}-120x+10
Use the distributive property to multiply 10 by 36x^{2}-12x+1.
360x^{2}-120x+10=2
Swap sides so that all variable terms are on the left hand side.
360x^{2}-120x+10-2=0
Subtract 2 from both sides.
360x^{2}-120x+8=0
Subtract 2 from 10 to get 8.
x=\frac{-\left(-120\right)±\sqrt{\left(-120\right)^{2}-4\times 360\times 8}}{2\times 360}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 360 for a, -120 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-120\right)±\sqrt{14400-4\times 360\times 8}}{2\times 360}
Square -120.
x=\frac{-\left(-120\right)±\sqrt{14400-1440\times 8}}{2\times 360}
Multiply -4 times 360.
x=\frac{-\left(-120\right)±\sqrt{14400-11520}}{2\times 360}
Multiply -1440 times 8.
x=\frac{-\left(-120\right)±\sqrt{2880}}{2\times 360}
Add 14400 to -11520.
x=\frac{-\left(-120\right)±24\sqrt{5}}{2\times 360}
Take the square root of 2880.
x=\frac{120±24\sqrt{5}}{2\times 360}
The opposite of -120 is 120.
x=\frac{120±24\sqrt{5}}{720}
Multiply 2 times 360.
x=\frac{24\sqrt{5}+120}{720}
Now solve the equation x=\frac{120±24\sqrt{5}}{720} when ± is plus. Add 120 to 24\sqrt{5}.
x=\frac{\sqrt{5}}{30}+\frac{1}{6}
Divide 120+24\sqrt{5} by 720.
x=\frac{120-24\sqrt{5}}{720}
Now solve the equation x=\frac{120±24\sqrt{5}}{720} when ± is minus. Subtract 24\sqrt{5} from 120.
x=-\frac{\sqrt{5}}{30}+\frac{1}{6}
Divide 120-24\sqrt{5} by 720.
x=\frac{\sqrt{5}}{30}+\frac{1}{6} x=-\frac{\sqrt{5}}{30}+\frac{1}{6}
The equation is now solved.
2=10\left(6x-1\right)^{2}
Variable x cannot be equal to \frac{1}{6} since division by zero is not defined. Multiply both sides of the equation by \left(6x-1\right)^{2}.
2=10\left(36x^{2}-12x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-1\right)^{2}.
2=360x^{2}-120x+10
Use the distributive property to multiply 10 by 36x^{2}-12x+1.
360x^{2}-120x+10=2
Swap sides so that all variable terms are on the left hand side.
360x^{2}-120x=2-10
Subtract 10 from both sides.
360x^{2}-120x=-8
Subtract 10 from 2 to get -8.
\frac{360x^{2}-120x}{360}=-\frac{8}{360}
Divide both sides by 360.
x^{2}+\left(-\frac{120}{360}\right)x=-\frac{8}{360}
Dividing by 360 undoes the multiplication by 360.
x^{2}-\frac{1}{3}x=-\frac{8}{360}
Reduce the fraction \frac{-120}{360} to lowest terms by extracting and canceling out 120.
x^{2}-\frac{1}{3}x=-\frac{1}{45}
Reduce the fraction \frac{-8}{360} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=-\frac{1}{45}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=-\frac{1}{45}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{180}
Add -\frac{1}{45} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{180}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{180}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{\sqrt{5}}{30} x-\frac{1}{6}=-\frac{\sqrt{5}}{30}
Simplify.
x=\frac{\sqrt{5}}{30}+\frac{1}{6} x=-\frac{\sqrt{5}}{30}+\frac{1}{6}
Add \frac{1}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}