Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{1\times 3+i+3i+i^{2}}
Multiply complex numbers 1+i and 3+i like you multiply binomials.
\frac{2}{1\times 3+i+3i-1}
By definition, i^{2} is -1.
\frac{2}{3+i+3i-1}
Do the multiplications in 1\times 3+i+3i-1.
\frac{2}{3-1+\left(1+3\right)i}
Combine the real and imaginary parts in 3+i+3i-1.
\frac{2}{2+4i}
Do the additions in 3-1+\left(1+3\right)i.
\frac{2\left(2-4i\right)}{\left(2+4i\right)\left(2-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-4i.
\frac{2\left(2-4i\right)}{2^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(2-4i\right)}{20}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 2+2\times \left(-4i\right)}{20}
Multiply 2 times 2-4i.
\frac{4-8i}{20}
Do the multiplications in 2\times 2+2\times \left(-4i\right).
\frac{1}{5}-\frac{2}{5}i
Divide 4-8i by 20 to get \frac{1}{5}-\frac{2}{5}i.
Re(\frac{2}{1\times 3+i+3i+i^{2}})
Multiply complex numbers 1+i and 3+i like you multiply binomials.
Re(\frac{2}{1\times 3+i+3i-1})
By definition, i^{2} is -1.
Re(\frac{2}{3+i+3i-1})
Do the multiplications in 1\times 3+i+3i-1.
Re(\frac{2}{3-1+\left(1+3\right)i})
Combine the real and imaginary parts in 3+i+3i-1.
Re(\frac{2}{2+4i})
Do the additions in 3-1+\left(1+3\right)i.
Re(\frac{2\left(2-4i\right)}{\left(2+4i\right)\left(2-4i\right)})
Multiply both numerator and denominator of \frac{2}{2+4i} by the complex conjugate of the denominator, 2-4i.
Re(\frac{2\left(2-4i\right)}{2^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2\left(2-4i\right)}{20})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 2+2\times \left(-4i\right)}{20})
Multiply 2 times 2-4i.
Re(\frac{4-8i}{20})
Do the multiplications in 2\times 2+2\times \left(-4i\right).
Re(\frac{1}{5}-\frac{2}{5}i)
Divide 4-8i by 20 to get \frac{1}{5}-\frac{2}{5}i.
\frac{1}{5}
The real part of \frac{1}{5}-\frac{2}{5}i is \frac{1}{5}.