Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{\frac{2}{x-2}-\frac{2\left(x-2\right)}{x-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x-2}{x-2}.
\frac{2}{\frac{2-2\left(x-2\right)}{x-2}}
Since \frac{2}{x-2} and \frac{2\left(x-2\right)}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{\frac{2-2x+4}{x-2}}
Do the multiplications in 2-2\left(x-2\right).
\frac{2}{\frac{6-2x}{x-2}}
Combine like terms in 2-2x+4.
\frac{2\left(x-2\right)}{6-2x}
Divide 2 by \frac{6-2x}{x-2} by multiplying 2 by the reciprocal of \frac{6-2x}{x-2}.
\frac{2\left(x-2\right)}{2\left(-x+3\right)}
Factor the expressions that are not already factored.
\frac{x-2}{-x+3}
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{\frac{2}{x-2}-\frac{2\left(x-2\right)}{x-2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{\frac{2-2\left(x-2\right)}{x-2}})
Since \frac{2}{x-2} and \frac{2\left(x-2\right)}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{\frac{2-2x+4}{x-2}})
Do the multiplications in 2-2\left(x-2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{\frac{6-2x}{x-2}})
Combine like terms in 2-2x+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-2\right)}{6-2x})
Divide 2 by \frac{6-2x}{x-2} by multiplying 2 by the reciprocal of \frac{6-2x}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-2\right)}{2\left(-x+3\right)})
Factor the expressions that are not already factored in \frac{2\left(x-2\right)}{6-2x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-2}{-x+3})
Cancel out 2 in both numerator and denominator.
\frac{\left(-x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)-\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+3)}{\left(-x^{1}+3\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(-x^{1}+3\right)x^{1-1}-\left(x^{1}-2\right)\left(-1\right)x^{1-1}}{\left(-x^{1}+3\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(-x^{1}+3\right)x^{0}-\left(x^{1}-2\right)\left(-1\right)x^{0}}{\left(-x^{1}+3\right)^{2}}
Do the arithmetic.
\frac{-x^{1}x^{0}+3x^{0}-\left(x^{1}\left(-1\right)x^{0}-2\left(-1\right)x^{0}\right)}{\left(-x^{1}+3\right)^{2}}
Expand using distributive property.
\frac{-x^{1}+3x^{0}-\left(-x^{1}-2\left(-1\right)x^{0}\right)}{\left(-x^{1}+3\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{-x^{1}+3x^{0}-\left(-x^{1}+2x^{0}\right)}{\left(-x^{1}+3\right)^{2}}
Do the arithmetic.
\frac{-x^{1}+3x^{0}-\left(-x^{1}\right)-2x^{0}}{\left(-x^{1}+3\right)^{2}}
Remove unnecessary parentheses.
\frac{\left(-1-\left(-1\right)\right)x^{1}+\left(3-2\right)x^{0}}{\left(-x^{1}+3\right)^{2}}
Combine like terms.
\frac{x^{0}}{\left(-x^{1}+3\right)^{2}}
Subtract -1 from -1 and 2 from 3.
\frac{x^{0}}{\left(-x+3\right)^{2}}
For any term t, t^{1}=t.
\frac{1}{\left(-x+3\right)^{2}}
For any term t except 0, t^{0}=1.