Evaluate
2\sqrt{3}\approx 3.464101615
Share
Copied to clipboard
\frac{2}{\frac{\sqrt{3}}{3}}-2\sin(60)\cos(45)+3\tan(30)\sin(45)
Get the value of \tan(30) from trigonometric values table.
\frac{2\times 3}{\sqrt{3}}-2\sin(60)\cos(45)+3\tan(30)\sin(45)
Divide 2 by \frac{\sqrt{3}}{3} by multiplying 2 by the reciprocal of \frac{\sqrt{3}}{3}.
\frac{2\times 3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-2\sin(60)\cos(45)+3\tan(30)\sin(45)
Rationalize the denominator of \frac{2\times 3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\times 3\sqrt{3}}{3}-2\sin(60)\cos(45)+3\tan(30)\sin(45)
The square of \sqrt{3} is 3.
\frac{6\sqrt{3}}{3}-2\sin(60)\cos(45)+3\tan(30)\sin(45)
Multiply 2 and 3 to get 6.
2\sqrt{3}-2\sin(60)\cos(45)+3\tan(30)\sin(45)
Divide 6\sqrt{3} by 3 to get 2\sqrt{3}.
2\sqrt{3}-2\times \frac{\sqrt{3}}{2}\cos(45)+3\tan(30)\sin(45)
Get the value of \sin(60) from trigonometric values table.
2\sqrt{3}-2\times \frac{\sqrt{3}}{2}\times \frac{\sqrt{2}}{2}+3\tan(30)\sin(45)
Get the value of \cos(45) from trigonometric values table.
2\sqrt{3}-\sqrt{3}\times \frac{\sqrt{2}}{2}+3\tan(30)\sin(45)
Cancel out 2 and 2.
2\sqrt{3}-\frac{\sqrt{3}\sqrt{2}}{2}+3\tan(30)\sin(45)
Express \sqrt{3}\times \frac{\sqrt{2}}{2} as a single fraction.
2\sqrt{3}-\frac{\sqrt{6}}{2}+3\tan(30)\sin(45)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{2\times 2\sqrt{3}}{2}-\frac{\sqrt{6}}{2}+3\tan(30)\sin(45)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{3} times \frac{2}{2}.
\frac{2\times 2\sqrt{3}-\sqrt{6}}{2}+3\tan(30)\sin(45)
Since \frac{2\times 2\sqrt{3}}{2} and \frac{\sqrt{6}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{4\sqrt{3}-\sqrt{6}}{2}+3\tan(30)\sin(45)
Do the multiplications in 2\times 2\sqrt{3}-\sqrt{6}.
\frac{4\sqrt{3}-\sqrt{6}}{2}+3\times \frac{\sqrt{3}}{3}\sin(45)
Get the value of \tan(30) from trigonometric values table.
\frac{4\sqrt{3}-\sqrt{6}}{2}+3\times \frac{\sqrt{3}}{3}\times \frac{\sqrt{2}}{2}
Get the value of \sin(45) from trigonometric values table.
\frac{4\sqrt{3}-\sqrt{6}}{2}+\sqrt{3}\times \frac{\sqrt{2}}{2}
Cancel out 3 and 3.
\frac{4\sqrt{3}-\sqrt{6}}{2}+\frac{\sqrt{3}\sqrt{2}}{2}
Express \sqrt{3}\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{4\sqrt{3}-\sqrt{6}+\sqrt{3}\sqrt{2}}{2}
Since \frac{4\sqrt{3}-\sqrt{6}}{2} and \frac{\sqrt{3}\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{4\sqrt{3}-\sqrt{6}+\sqrt{6}}{2}
Do the multiplications in 4\sqrt{3}-\sqrt{6}+\sqrt{3}\sqrt{2}.
\frac{4\sqrt{3}}{2}
Do the calculations in 4\sqrt{3}-\sqrt{6}+\sqrt{6}.
2\sqrt{3}
Divide 4\sqrt{3} by 2 to get 2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}