Evaluate
\frac{14\sqrt{5}}{5}\approx 6.260990337
Share
Copied to clipboard
\frac{2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}+\sqrt{20}+\frac{8}{\sqrt{80}}
Rationalize the denominator of \frac{2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{2\sqrt{5}}{5}+\sqrt{20}+\frac{8}{\sqrt{80}}
The square of \sqrt{5} is 5.
\frac{2\sqrt{5}}{5}+2\sqrt{5}+\frac{8}{\sqrt{80}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{12}{5}\sqrt{5}+\frac{8}{\sqrt{80}}
Combine \frac{2\sqrt{5}}{5} and 2\sqrt{5} to get \frac{12}{5}\sqrt{5}.
\frac{12}{5}\sqrt{5}+\frac{8}{4\sqrt{5}}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
\frac{12}{5}\sqrt{5}+\frac{8\sqrt{5}}{4\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{8}{4\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{12}{5}\sqrt{5}+\frac{8\sqrt{5}}{4\times 5}
The square of \sqrt{5} is 5.
\frac{12}{5}\sqrt{5}+\frac{2\sqrt{5}}{5}
Cancel out 4 in both numerator and denominator.
\frac{14}{5}\sqrt{5}
Combine \frac{12}{5}\sqrt{5} and \frac{2\sqrt{5}}{5} to get \frac{14}{5}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}