Evaluate
18\sqrt{3}+30-9\sqrt{6}-15\sqrt{2}\approx 17.918303416
Share
Copied to clipboard
\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\times \frac{\sqrt{2}}{\sqrt{2}+1}\times \frac{3}{2-\sqrt{3}}
Rationalize the denominator of \frac{2}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\times \frac{\sqrt{2}}{\sqrt{2}+1}\times \frac{3}{2-\sqrt{3}}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{3}+1\right)}{3-1}\times \frac{\sqrt{2}}{\sqrt{2}+1}\times \frac{3}{2-\sqrt{3}}
Square \sqrt{3}. Square 1.
\frac{2\left(\sqrt{3}+1\right)}{2}\times \frac{\sqrt{2}}{\sqrt{2}+1}\times \frac{3}{2-\sqrt{3}}
Subtract 1 from 3 to get 2.
\left(\sqrt{3}+1\right)\times \frac{\sqrt{2}}{\sqrt{2}+1}\times \frac{3}{2-\sqrt{3}}
Cancel out 2 and 2.
\left(\sqrt{3}+1\right)\times \frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\times \frac{3}{2-\sqrt{3}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{2}+1} by multiplying numerator and denominator by \sqrt{2}-1.
\left(\sqrt{3}+1\right)\times \frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}\times \frac{3}{2-\sqrt{3}}
Consider \left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\sqrt{3}+1\right)\times \frac{\sqrt{2}\left(\sqrt{2}-1\right)}{2-1}\times \frac{3}{2-\sqrt{3}}
Square \sqrt{2}. Square 1.
\left(\sqrt{3}+1\right)\times \frac{\sqrt{2}\left(\sqrt{2}-1\right)}{1}\times \frac{3}{2-\sqrt{3}}
Subtract 1 from 2 to get 1.
\left(\sqrt{3}+1\right)\sqrt{2}\left(\sqrt{2}-1\right)\times \frac{3}{2-\sqrt{3}}
Anything divided by one gives itself.
\left(\sqrt{3}+1\right)\left(\left(\sqrt{2}\right)^{2}-\sqrt{2}\right)\times \frac{3}{2-\sqrt{3}}
Use the distributive property to multiply \sqrt{2} by \sqrt{2}-1.
\left(\sqrt{3}+1\right)\left(2-\sqrt{2}\right)\times \frac{3}{2-\sqrt{3}}
The square of \sqrt{2} is 2.
\left(\sqrt{3}+1\right)\left(2-\sqrt{2}\right)\times \frac{3\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Rationalize the denominator of \frac{3}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\left(\sqrt{3}+1\right)\left(2-\sqrt{2}\right)\times \frac{3\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\sqrt{3}+1\right)\left(2-\sqrt{2}\right)\times \frac{3\left(2+\sqrt{3}\right)}{4-3}
Square 2. Square \sqrt{3}.
\left(\sqrt{3}+1\right)\left(2-\sqrt{2}\right)\times \frac{3\left(2+\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
\left(\sqrt{3}+1\right)\left(2-\sqrt{2}\right)\times 3\left(2+\sqrt{3}\right)
Anything divided by one gives itself.
\left(\sqrt{3}+1\right)\left(2-\sqrt{2}\right)\left(6+3\sqrt{3}\right)
Use the distributive property to multiply 3 by 2+\sqrt{3}.
\left(2\sqrt{3}-\sqrt{3}\sqrt{2}+2-\sqrt{2}\right)\left(6+3\sqrt{3}\right)
Apply the distributive property by multiplying each term of \sqrt{3}+1 by each term of 2-\sqrt{2}.
\left(2\sqrt{3}-\sqrt{6}+2-\sqrt{2}\right)\left(6+3\sqrt{3}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
12\sqrt{3}+6\left(\sqrt{3}\right)^{2}-6\sqrt{6}-3\sqrt{3}\sqrt{6}+12+6\sqrt{3}-6\sqrt{2}-3\sqrt{3}\sqrt{2}
Apply the distributive property by multiplying each term of 2\sqrt{3}-\sqrt{6}+2-\sqrt{2} by each term of 6+3\sqrt{3}.
12\sqrt{3}+6\times 3-6\sqrt{6}-3\sqrt{3}\sqrt{6}+12+6\sqrt{3}-6\sqrt{2}-3\sqrt{3}\sqrt{2}
The square of \sqrt{3} is 3.
12\sqrt{3}+18-6\sqrt{6}-3\sqrt{3}\sqrt{6}+12+6\sqrt{3}-6\sqrt{2}-3\sqrt{3}\sqrt{2}
Multiply 6 and 3 to get 18.
12\sqrt{3}+18-6\sqrt{6}-3\sqrt{3}\sqrt{3}\sqrt{2}+12+6\sqrt{3}-6\sqrt{2}-3\sqrt{3}\sqrt{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
12\sqrt{3}+18-6\sqrt{6}-3\times 3\sqrt{2}+12+6\sqrt{3}-6\sqrt{2}-3\sqrt{3}\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
12\sqrt{3}+18-6\sqrt{6}-9\sqrt{2}+12+6\sqrt{3}-6\sqrt{2}-3\sqrt{3}\sqrt{2}
Multiply -3 and 3 to get -9.
12\sqrt{3}+30-6\sqrt{6}-9\sqrt{2}+6\sqrt{3}-6\sqrt{2}-3\sqrt{3}\sqrt{2}
Add 18 and 12 to get 30.
18\sqrt{3}+30-6\sqrt{6}-9\sqrt{2}-6\sqrt{2}-3\sqrt{3}\sqrt{2}
Combine 12\sqrt{3} and 6\sqrt{3} to get 18\sqrt{3}.
18\sqrt{3}+30-6\sqrt{6}-15\sqrt{2}-3\sqrt{3}\sqrt{2}
Combine -9\sqrt{2} and -6\sqrt{2} to get -15\sqrt{2}.
18\sqrt{3}+30-6\sqrt{6}-15\sqrt{2}-3\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
18\sqrt{3}+30-9\sqrt{6}-15\sqrt{2}
Combine -6\sqrt{6} and -3\sqrt{6} to get -9\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}