Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}+\sqrt{3}
Rationalize the denominator of \frac{2}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}+\sqrt{3}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{3}+1\right)}{3-1}+\sqrt{3}
Square \sqrt{3}. Square 1.
\frac{2\left(\sqrt{3}+1\right)}{2}+\sqrt{3}
Subtract 1 from 3 to get 2.
\sqrt{3}+1+\sqrt{3}
Cancel out 2 and 2.
2\sqrt{3}+1
Combine \sqrt{3} and \sqrt{3} to get 2\sqrt{3}.