Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+1}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2}{\frac{\sqrt{3}}{3}+1}
The square of \sqrt{3} is 3.
\frac{2}{\frac{\sqrt{3}}{3}+\frac{3}{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{2}{\frac{\sqrt{3}+3}{3}}
Since \frac{\sqrt{3}}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{2\times 3}{\sqrt{3}+3}
Divide 2 by \frac{\sqrt{3}+3}{3} by multiplying 2 by the reciprocal of \frac{\sqrt{3}+3}{3}.
\frac{2\times 3\left(\sqrt{3}-3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}
Rationalize the denominator of \frac{2\times 3}{\sqrt{3}+3} by multiplying numerator and denominator by \sqrt{3}-3.
\frac{2\times 3\left(\sqrt{3}-3\right)}{\left(\sqrt{3}\right)^{2}-3^{2}}
Consider \left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\times 3\left(\sqrt{3}-3\right)}{3-9}
Square \sqrt{3}. Square 3.
\frac{2\times 3\left(\sqrt{3}-3\right)}{-6}
Subtract 9 from 3 to get -6.
\frac{6\left(\sqrt{3}-3\right)}{-6}
Multiply 2 and 3 to get 6.
-\left(\sqrt{3}-3\right)
Cancel out -6 and -6.
-\sqrt{3}-\left(-3\right)
To find the opposite of \sqrt{3}-3, find the opposite of each term.
-\sqrt{3}+3
The opposite of -3 is 3.