Solve for b
b=\sqrt{3}+1\approx 2.732050808
Share
Copied to clipboard
\frac{2\times 2}{\sqrt{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Divide 2 by \frac{\sqrt{2}}{2} by multiplying 2 by the reciprocal of \frac{\sqrt{2}}{2}.
\frac{4}{\sqrt{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Multiply 2 and 2 to get 4.
\frac{4\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Rationalize the denominator of \frac{4}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{4\sqrt{2}}{2}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
The square of \sqrt{2} is 2.
2\sqrt{2}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Divide 4\sqrt{2} by 2 to get 2\sqrt{2}.
2\sqrt{2}=\frac{b\times 4}{\sqrt{2}+\sqrt{6}}
Divide b by \frac{\sqrt{2}+\sqrt{6}}{4} by multiplying b by the reciprocal of \frac{\sqrt{2}+\sqrt{6}}{4}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
Rationalize the denominator of \frac{b\times 4}{\sqrt{2}+\sqrt{6}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{6}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
Square \sqrt{2}. Square \sqrt{6}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Subtract 6 from 2 to get -4.
2\sqrt{2}=b\left(-1\right)\left(\sqrt{2}-\sqrt{6}\right)
Cancel out -4 and -4.
2\sqrt{2}=-b\sqrt{2}+b\sqrt{6}
Use the distributive property to multiply b\left(-1\right) by \sqrt{2}-\sqrt{6}.
-b\sqrt{2}+b\sqrt{6}=2\sqrt{2}
Swap sides so that all variable terms are on the left hand side.
\left(-\sqrt{2}+\sqrt{6}\right)b=2\sqrt{2}
Combine all terms containing b.
\left(\sqrt{6}-\sqrt{2}\right)b=2\sqrt{2}
The equation is in standard form.
\frac{\left(\sqrt{6}-\sqrt{2}\right)b}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Divide both sides by -\sqrt{2}+\sqrt{6}.
b=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Dividing by -\sqrt{2}+\sqrt{6} undoes the multiplication by -\sqrt{2}+\sqrt{6}.
b=\sqrt{3}+1
Divide 2\sqrt{2} by -\sqrt{2}+\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}