Evaluate
\frac{175}{4}=43.75
Factor
\frac{5 ^ {2} \cdot 7}{2 ^ {2}} = 43\frac{3}{4} = 43.75
Share
Copied to clipboard
\frac{4\times \frac{3}{4}}{\frac{\frac{3}{40}}{5}\times \frac{96}{21}}
Multiply 2 and 2 to get 4.
\frac{3}{\frac{\frac{3}{40}}{5}\times \frac{96}{21}}
Cancel out 4 and 4.
\frac{3}{\frac{3}{40\times 5}\times \frac{96}{21}}
Express \frac{\frac{3}{40}}{5} as a single fraction.
\frac{3}{\frac{3}{200}\times \frac{96}{21}}
Multiply 40 and 5 to get 200.
\frac{3}{\frac{3}{200}\times \frac{32}{7}}
Reduce the fraction \frac{96}{21} to lowest terms by extracting and canceling out 3.
\frac{3}{\frac{3\times 32}{200\times 7}}
Multiply \frac{3}{200} times \frac{32}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{\frac{96}{1400}}
Do the multiplications in the fraction \frac{3\times 32}{200\times 7}.
\frac{3}{\frac{12}{175}}
Reduce the fraction \frac{96}{1400} to lowest terms by extracting and canceling out 8.
3\times \frac{175}{12}
Divide 3 by \frac{12}{175} by multiplying 3 by the reciprocal of \frac{12}{175}.
\frac{3\times 175}{12}
Express 3\times \frac{175}{12} as a single fraction.
\frac{525}{12}
Multiply 3 and 175 to get 525.
\frac{175}{4}
Reduce the fraction \frac{525}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}