Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{5}\left(3-2\sqrt{3}\right)}{\left(3+2\sqrt{3}\right)\left(3-2\sqrt{3}\right)}
Rationalize the denominator of \frac{2\sqrt{5}}{3+2\sqrt{3}} by multiplying numerator and denominator by 3-2\sqrt{3}.
\frac{2\sqrt{5}\left(3-2\sqrt{3}\right)}{3^{2}-\left(2\sqrt{3}\right)^{2}}
Consider \left(3+2\sqrt{3}\right)\left(3-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{5}\left(3-2\sqrt{3}\right)}{9-\left(2\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{2\sqrt{5}\left(3-2\sqrt{3}\right)}{9-2^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{2\sqrt{5}\left(3-2\sqrt{3}\right)}{9-4\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{5}\left(3-2\sqrt{3}\right)}{9-4\times 3}
The square of \sqrt{3} is 3.
\frac{2\sqrt{5}\left(3-2\sqrt{3}\right)}{9-12}
Multiply 4 and 3 to get 12.
\frac{2\sqrt{5}\left(3-2\sqrt{3}\right)}{-3}
Subtract 12 from 9 to get -3.
\frac{6\sqrt{5}-4\sqrt{3}\sqrt{5}}{-3}
Use the distributive property to multiply 2\sqrt{5} by 3-2\sqrt{3}.
\frac{6\sqrt{5}-4\sqrt{15}}{-3}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.