Solve for x
x=\frac{1}{3}\approx 0.333333333
\theta \neq 0
Solve for θ
\theta \neq 0
x=\frac{1}{3}\text{ and }\theta \neq 0
Graph
Share
Copied to clipboard
2\theta =2x\times 3\theta
Multiply both sides of the equation by 3\theta .
2\theta =6x\theta
Multiply 2 and 3 to get 6.
6x\theta =2\theta
Swap sides so that all variable terms are on the left hand side.
6\theta x=2\theta
The equation is in standard form.
\frac{6\theta x}{6\theta }=\frac{2\theta }{6\theta }
Divide both sides by 6\theta .
x=\frac{2\theta }{6\theta }
Dividing by 6\theta undoes the multiplication by 6\theta .
x=\frac{1}{3}
Divide 2\theta by 6\theta .
2\theta =2x\times 3\theta
Variable \theta cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3\theta .
2\theta =6x\theta
Multiply 2 and 3 to get 6.
2\theta -6x\theta =0
Subtract 6x\theta from both sides.
\left(2-6x\right)\theta =0
Combine all terms containing \theta .
\theta =0
Divide 0 by 2-6x.
\theta \in \emptyset
Variable \theta cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}