Solve for x
x=25
Graph
Share
Copied to clipboard
\frac{2\sqrt{x}+5}{3}=\sqrt{x}
Subtract 0 from both sides of the equation.
2\sqrt{x}+5+3x\times 0=3\sqrt{x}
Multiply both sides of the equation by 3.
2\sqrt{x}+5+0x=3\sqrt{x}
Multiply 3 and 0 to get 0.
2\sqrt{x}+5+0=3\sqrt{x}
Anything times zero gives zero.
2\sqrt{x}+5=3\sqrt{x}
Add 5 and 0 to get 5.
\left(2\sqrt{x}+5\right)^{2}=\left(3\sqrt{x}\right)^{2}
Square both sides of the equation.
4\left(\sqrt{x}\right)^{2}+20\sqrt{x}+25=\left(3\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{x}+5\right)^{2}.
4x+20\sqrt{x}+25=\left(3\sqrt{x}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
4x+20\sqrt{x}+25=3^{2}\left(\sqrt{x}\right)^{2}
Expand \left(3\sqrt{x}\right)^{2}.
4x+20\sqrt{x}+25=9\left(\sqrt{x}\right)^{2}
Calculate 3 to the power of 2 and get 9.
4x+20\sqrt{x}+25=9x
Calculate \sqrt{x} to the power of 2 and get x.
20\sqrt{x}=9x-\left(4x+25\right)
Subtract 4x+25 from both sides of the equation.
20\sqrt{x}=9x-4x-25
To find the opposite of 4x+25, find the opposite of each term.
20\sqrt{x}=5x-25
Combine 9x and -4x to get 5x.
\left(20\sqrt{x}\right)^{2}=\left(5x-25\right)^{2}
Square both sides of the equation.
20^{2}\left(\sqrt{x}\right)^{2}=\left(5x-25\right)^{2}
Expand \left(20\sqrt{x}\right)^{2}.
400\left(\sqrt{x}\right)^{2}=\left(5x-25\right)^{2}
Calculate 20 to the power of 2 and get 400.
400x=\left(5x-25\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
400x=25x^{2}-250x+625
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-25\right)^{2}.
400x-25x^{2}=-250x+625
Subtract 25x^{2} from both sides.
400x-25x^{2}+250x=625
Add 250x to both sides.
650x-25x^{2}=625
Combine 400x and 250x to get 650x.
650x-25x^{2}-625=0
Subtract 625 from both sides.
-25x^{2}+650x-625=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-650±\sqrt{650^{2}-4\left(-25\right)\left(-625\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, 650 for b, and -625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-650±\sqrt{422500-4\left(-25\right)\left(-625\right)}}{2\left(-25\right)}
Square 650.
x=\frac{-650±\sqrt{422500+100\left(-625\right)}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-650±\sqrt{422500-62500}}{2\left(-25\right)}
Multiply 100 times -625.
x=\frac{-650±\sqrt{360000}}{2\left(-25\right)}
Add 422500 to -62500.
x=\frac{-650±600}{2\left(-25\right)}
Take the square root of 360000.
x=\frac{-650±600}{-50}
Multiply 2 times -25.
x=-\frac{50}{-50}
Now solve the equation x=\frac{-650±600}{-50} when ± is plus. Add -650 to 600.
x=1
Divide -50 by -50.
x=-\frac{1250}{-50}
Now solve the equation x=\frac{-650±600}{-50} when ± is minus. Subtract 600 from -650.
x=25
Divide -1250 by -50.
x=1 x=25
The equation is now solved.
\frac{2\sqrt{1}+5}{3}=\sqrt{1}-1\times 1\times 0
Substitute 1 for x in the equation \frac{2\sqrt{x}+5}{3}=\sqrt{x}-1x\times 0.
\frac{7}{3}=1
Simplify. The value x=1 does not satisfy the equation.
\frac{2\sqrt{25}+5}{3}=\sqrt{25}-1\times 25\times 0
Substitute 25 for x in the equation \frac{2\sqrt{x}+5}{3}=\sqrt{x}-1x\times 0.
5=5
Simplify. The value x=25 satisfies the equation.
x=25
Equation 2\sqrt{x}+5=3\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}