Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{3}\sqrt{x}+\frac{1}{3}=x
Divide each term of 2\sqrt{x}+1 by 3 to get \frac{2}{3}\sqrt{x}+\frac{1}{3}.
\frac{2}{3}\sqrt{x}+\frac{1}{3}-x=0
Subtract x from both sides.
\frac{2}{3}\sqrt{x}-x=-\frac{1}{3}
Subtract \frac{1}{3} from both sides. Anything subtracted from zero gives its negation.
\frac{2}{3}\sqrt{x}=-\frac{1}{3}+x
Subtract -x from both sides of the equation.
\left(\frac{2}{3}\sqrt{x}\right)^{2}=\left(-\frac{1}{3}+x\right)^{2}
Square both sides of the equation.
\left(\frac{2}{3}\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-\frac{1}{3}+x\right)^{2}
Expand \left(\frac{2}{3}\sqrt{x}\right)^{2}.
\frac{4}{9}\left(\sqrt{x}\right)^{2}=\left(-\frac{1}{3}+x\right)^{2}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{4}{9}x=\left(-\frac{1}{3}+x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
\frac{4}{9}x=\frac{1}{9}-\frac{2}{3}x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{1}{3}+x\right)^{2}.
\frac{4}{9}x+\frac{2}{3}x=\frac{1}{9}+x^{2}
Add \frac{2}{3}x to both sides.
\frac{10}{9}x=\frac{1}{9}+x^{2}
Combine \frac{4}{9}x and \frac{2}{3}x to get \frac{10}{9}x.
\frac{10}{9}x-x^{2}=\frac{1}{9}
Subtract x^{2} from both sides.
-x^{2}+\frac{10}{9}x=\frac{1}{9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+\frac{10}{9}x-\frac{1}{9}=\frac{1}{9}-\frac{1}{9}
Subtract \frac{1}{9} from both sides of the equation.
-x^{2}+\frac{10}{9}x-\frac{1}{9}=0
Subtracting \frac{1}{9} from itself leaves 0.
x=\frac{-\frac{10}{9}±\sqrt{\left(\frac{10}{9}\right)^{2}-4\left(-1\right)\left(-\frac{1}{9}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{10}{9} for b, and -\frac{1}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{10}{9}±\sqrt{\frac{100}{81}-4\left(-1\right)\left(-\frac{1}{9}\right)}}{2\left(-1\right)}
Square \frac{10}{9} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{10}{9}±\sqrt{\frac{100}{81}+4\left(-\frac{1}{9}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{10}{9}±\sqrt{\frac{100}{81}-\frac{4}{9}}}{2\left(-1\right)}
Multiply 4 times -\frac{1}{9}.
x=\frac{-\frac{10}{9}±\sqrt{\frac{64}{81}}}{2\left(-1\right)}
Add \frac{100}{81} to -\frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{10}{9}±\frac{8}{9}}{2\left(-1\right)}
Take the square root of \frac{64}{81}.
x=\frac{-\frac{10}{9}±\frac{8}{9}}{-2}
Multiply 2 times -1.
x=-\frac{\frac{2}{9}}{-2}
Now solve the equation x=\frac{-\frac{10}{9}±\frac{8}{9}}{-2} when ± is plus. Add -\frac{10}{9} to \frac{8}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{9}
Divide -\frac{2}{9} by -2.
x=-\frac{2}{-2}
Now solve the equation x=\frac{-\frac{10}{9}±\frac{8}{9}}{-2} when ± is minus. Subtract \frac{8}{9} from -\frac{10}{9} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=1
Divide -2 by -2.
x=\frac{1}{9} x=1
The equation is now solved.
\frac{2\sqrt{\frac{1}{9}}+1}{3}=\frac{1}{9}
Substitute \frac{1}{9} for x in the equation \frac{2\sqrt{x}+1}{3}=x.
\frac{5}{9}=\frac{1}{9}
Simplify. The value x=\frac{1}{9} does not satisfy the equation.
\frac{2\sqrt{1}+1}{3}=1
Substitute 1 for x in the equation \frac{2\sqrt{x}+1}{3}=x.
1=1
Simplify. The value x=1 satisfies the equation.
x=1
Equation \frac{2\sqrt{x}}{3}=x-\frac{1}{3} has a unique solution.