Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{7}-1\right)\left(2\sqrt{7}-5\right)}{\left(2\sqrt{7}+5\right)\left(2\sqrt{7}-5\right)}
Rationalize the denominator of \frac{2\sqrt{7}-1}{2\sqrt{7}+5} by multiplying numerator and denominator by 2\sqrt{7}-5.
\frac{\left(2\sqrt{7}-1\right)\left(2\sqrt{7}-5\right)}{\left(2\sqrt{7}\right)^{2}-5^{2}}
Consider \left(2\sqrt{7}+5\right)\left(2\sqrt{7}-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{7}-1\right)\left(2\sqrt{7}-5\right)}{2^{2}\left(\sqrt{7}\right)^{2}-5^{2}}
Expand \left(2\sqrt{7}\right)^{2}.
\frac{\left(2\sqrt{7}-1\right)\left(2\sqrt{7}-5\right)}{4\left(\sqrt{7}\right)^{2}-5^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(2\sqrt{7}-1\right)\left(2\sqrt{7}-5\right)}{4\times 7-5^{2}}
The square of \sqrt{7} is 7.
\frac{\left(2\sqrt{7}-1\right)\left(2\sqrt{7}-5\right)}{28-5^{2}}
Multiply 4 and 7 to get 28.
\frac{\left(2\sqrt{7}-1\right)\left(2\sqrt{7}-5\right)}{28-25}
Calculate 5 to the power of 2 and get 25.
\frac{\left(2\sqrt{7}-1\right)\left(2\sqrt{7}-5\right)}{3}
Subtract 25 from 28 to get 3.
\frac{4\left(\sqrt{7}\right)^{2}-10\sqrt{7}-2\sqrt{7}+5}{3}
Apply the distributive property by multiplying each term of 2\sqrt{7}-1 by each term of 2\sqrt{7}-5.
\frac{4\times 7-10\sqrt{7}-2\sqrt{7}+5}{3}
The square of \sqrt{7} is 7.
\frac{28-10\sqrt{7}-2\sqrt{7}+5}{3}
Multiply 4 and 7 to get 28.
\frac{28-12\sqrt{7}+5}{3}
Combine -10\sqrt{7} and -2\sqrt{7} to get -12\sqrt{7}.
\frac{33-12\sqrt{7}}{3}
Add 28 and 5 to get 33.
11-4\sqrt{7}
Divide each term of 33-12\sqrt{7} by 3 to get 11-4\sqrt{7}.