Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{7}\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}
Rationalize the denominator of \frac{2\sqrt{7}}{3-\sqrt{5}} by multiplying numerator and denominator by 3+\sqrt{5}.
\frac{2\sqrt{7}\left(3+\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{7}\left(3+\sqrt{5}\right)}{9-5}
Square 3. Square \sqrt{5}.
\frac{2\sqrt{7}\left(3+\sqrt{5}\right)}{4}
Subtract 5 from 9 to get 4.
\frac{6\sqrt{7}+2\sqrt{7}\sqrt{5}}{4}
Use the distributive property to multiply 2\sqrt{7} by 3+\sqrt{5}.
\frac{6\sqrt{7}+2\sqrt{35}}{4}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.