Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{6}+\sqrt{75}-\frac{3}{\sqrt{12}}
Cancel out 2 and 2.
\sqrt{6}+5\sqrt{3}-\frac{3}{\sqrt{12}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\sqrt{6}+5\sqrt{3}-\frac{3}{2\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\sqrt{6}+5\sqrt{3}-\frac{3\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{3}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{6}+5\sqrt{3}-\frac{3\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\sqrt{6}+5\sqrt{3}-\frac{\sqrt{3}}{2}
Cancel out 3 in both numerator and denominator.
\sqrt{6}+\frac{9}{2}\sqrt{3}
Combine 5\sqrt{3} and -\frac{\sqrt{3}}{2} to get \frac{9}{2}\sqrt{3}.