Evaluate
\frac{9\sqrt{3}}{2}+\sqrt{6}\approx 10.243718377
Share
Copied to clipboard
\sqrt{6}+\sqrt{75}-\frac{3}{\sqrt{12}}
Cancel out 2 and 2.
\sqrt{6}+5\sqrt{3}-\frac{3}{\sqrt{12}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\sqrt{6}+5\sqrt{3}-\frac{3}{2\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\sqrt{6}+5\sqrt{3}-\frac{3\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{3}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{6}+5\sqrt{3}-\frac{3\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\sqrt{6}+5\sqrt{3}-\frac{\sqrt{3}}{2}
Cancel out 3 in both numerator and denominator.
\sqrt{6}+\frac{9}{2}\sqrt{3}
Combine 5\sqrt{3} and -\frac{\sqrt{3}}{2} to get \frac{9}{2}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}