Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{6}\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}
Rationalize the denominator of \frac{2\sqrt{6}}{\sqrt{7}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{7}-\sqrt{5}.
\frac{2\sqrt{6}\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{6}\left(\sqrt{7}-\sqrt{5}\right)}{7-5}
Square \sqrt{7}. Square \sqrt{5}.
\frac{2\sqrt{6}\left(\sqrt{7}-\sqrt{5}\right)}{2}
Subtract 5 from 7 to get 2.
\frac{2\sqrt{6}\sqrt{7}-2\sqrt{6}\sqrt{5}}{2}
Use the distributive property to multiply 2\sqrt{6} by \sqrt{7}-\sqrt{5}.
\frac{2\sqrt{42}-2\sqrt{6}\sqrt{5}}{2}
To multiply \sqrt{6} and \sqrt{7}, multiply the numbers under the square root.
\frac{2\sqrt{42}-2\sqrt{30}}{2}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
\sqrt{42}-\sqrt{30}
Divide each term of 2\sqrt{42}-2\sqrt{30} by 2 to get \sqrt{42}-\sqrt{30}.