Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{6}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}
Rationalize the denominator of \frac{2\sqrt{6}}{\sqrt{3}-2} by multiplying numerator and denominator by \sqrt{3}+2.
\frac{2\sqrt{6}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}
Consider \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{6}\left(\sqrt{3}+2\right)}{3-4}
Square \sqrt{3}. Square 2.
\frac{2\sqrt{6}\left(\sqrt{3}+2\right)}{-1}
Subtract 4 from 3 to get -1.
-2\sqrt{6}\left(\sqrt{3}+2\right)
Anything divided by -1 gives its opposite.
-\left(2\sqrt{6}\sqrt{3}+4\sqrt{6}\right)
Use the distributive property to multiply 2\sqrt{6} by \sqrt{3}+2.
-\left(2\sqrt{3}\sqrt{2}\sqrt{3}+4\sqrt{6}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
-\left(2\times 3\sqrt{2}+4\sqrt{6}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
-\left(6\sqrt{2}+4\sqrt{6}\right)
Multiply 2 and 3 to get 6.
-6\sqrt{2}-4\sqrt{6}
To find the opposite of 6\sqrt{2}+4\sqrt{6}, find the opposite of each term.