Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{5}\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}
Rationalize the denominator of \frac{2\sqrt{5}}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
\frac{2\sqrt{5}\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{5}\left(3-\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
\frac{2\sqrt{5}\left(3-\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
\frac{6\sqrt{5}-2\sqrt{3}\sqrt{5}}{6}
Use the distributive property to multiply 2\sqrt{5} by 3-\sqrt{3}.
\frac{6\sqrt{5}-2\sqrt{15}}{6}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.