Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{5}+5\right)\left(2\sqrt{5}+5\right)}{\left(2\sqrt{5}-5\right)\left(2\sqrt{5}+5\right)}
Rationalize the denominator of \frac{2\sqrt{5}+5}{2\sqrt{5}-5} by multiplying numerator and denominator by 2\sqrt{5}+5.
\frac{\left(2\sqrt{5}+5\right)\left(2\sqrt{5}+5\right)}{\left(2\sqrt{5}\right)^{2}-5^{2}}
Consider \left(2\sqrt{5}-5\right)\left(2\sqrt{5}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{5}+5\right)^{2}}{\left(2\sqrt{5}\right)^{2}-5^{2}}
Multiply 2\sqrt{5}+5 and 2\sqrt{5}+5 to get \left(2\sqrt{5}+5\right)^{2}.
\frac{4\left(\sqrt{5}\right)^{2}+20\sqrt{5}+25}{\left(2\sqrt{5}\right)^{2}-5^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{5}+5\right)^{2}.
\frac{4\times 5+20\sqrt{5}+25}{\left(2\sqrt{5}\right)^{2}-5^{2}}
The square of \sqrt{5} is 5.
\frac{20+20\sqrt{5}+25}{\left(2\sqrt{5}\right)^{2}-5^{2}}
Multiply 4 and 5 to get 20.
\frac{45+20\sqrt{5}}{\left(2\sqrt{5}\right)^{2}-5^{2}}
Add 20 and 25 to get 45.
\frac{45+20\sqrt{5}}{2^{2}\left(\sqrt{5}\right)^{2}-5^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{45+20\sqrt{5}}{4\left(\sqrt{5}\right)^{2}-5^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{45+20\sqrt{5}}{4\times 5-5^{2}}
The square of \sqrt{5} is 5.
\frac{45+20\sqrt{5}}{20-5^{2}}
Multiply 4 and 5 to get 20.
\frac{45+20\sqrt{5}}{20-25}
Calculate 5 to the power of 2 and get 25.
\frac{45+20\sqrt{5}}{-5}
Subtract 25 from 20 to get -5.
-9-4\sqrt{5}
Divide each term of 45+20\sqrt{5} by -5 to get -9-4\sqrt{5}.